В решении.
Объяснение:
Постройте графики функций y= -3/x и y=x+4 Укажите координаты точек пересечения этих графиков.
График y= -3/x гипербола. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -5 -4 -3 -2 -1,5 -1 -0,5 1 1,5 2 3 4 5
у 0,6 0,75 1 1,5 2 3 6 -3 -2 -1,5 -1 -0,75 -0,6
y=x+4. Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у 3 4 5
Координаты точек пересечения гиперболы и прямой (-1; 3) (-3; 1).
Точки пересечения находятся во второй четверти.
решение:
d = 23 - 26 = -3
a₁₀ = a₁ + 9d = 26 +9*(-3) = 26 -27 = -1
2) Является ли число 30 членом арифметической прогрессии
а1=4; а4=8,5
решение:
а₄ = а₁ + 3d
8,5 = 4 +3d
3d = 4,5
d = 1,5
an = a₁ + d(n-1)
30 = 4 +1,5(n-1)
30 = 4 +1,5n -1,5
1,5n = 27,5
n = 27,5 : 1,5 =55/3 - число не целое
вывод: 30 не является членом прогрессии.
3)Вычислите S₁₉, если an=15-3n
а₁ = 15 - 3*1 = 12
а₁₉ = 15 - 3*19 = 15 - 57 = -42
S₁₉ =(12 -42)*19/2 = -15*19 = 2854)Сколько положительных членов содержится в арифметической прогрессии 12,6; 12,1; ... ?
а₁ = 12,6
d = 12,1 - 12,6 = -0,5
an = a₁ + d(n-1)
a₁ + d(n-1) > 0
12,6 -0,5(n-1) > 0, ⇒12,6 -0,5n +0,5 > 0, ⇒ -0,5n > -13,1, ⇒ n < 26,2
ответ: 26