смотри 1. Берешь производную. получается y` = -2X - 6. 2. Находишь экстремум - т. е. точки, где прозводная равно 0. 0 = -2X - 6 X= - 3. Так как значение одно, значит экстремум один всего у функции. Это либо маскимум, либо минимум. 3. Производная в точке слева от экстремума, например, y`(-10) = 14 > 0 Производная справа, например в точке X=0 y`(0) = - 6 < 0. Т. е. производная меняет знак с плюса на минус. Значит X = -3 - это максимум. Либо зная, что экстремум один. Берешь любое другое значение для функции, например X=0. получаешь Y = -9. Значит экстремум больше этого значения. А так как он больше и он один, то полюбому это максимум при любых значениях X.
y=-2x^2+9x-4, графиком функции явл. порабола с ветвями вниз, значит наиб. значение функция принимает в вершине пораболы, ищем координаты вершины, xо=-b/2a=9/4, yо=-2*81/16+81/4-4=6 1/8, отв 6 1/8,
Вспомним, что процентная концентрация или массовая доля w растворенного вещества Х в растворе - это отношение массы растворенного вещества m(Х) к массе раствора m(раствора): w = m(X) / m(раствор) Она часто задается в процентах: w = m(X) / m(раствор) * 100%
1 случай. Масса m1 кислоты в получившемся растворе: m1 = 2 w1 + 6 w2, где w1 и w2 - массовые доли кислоты в первом (2 кг) и втором (6 кг) растворе. Массовая доля w3 кислоты в получившемся растворе равна по условию 0,36. И она же равна w3 = m1 / (2 + 6) = m1 / 8 = (2 w1 + 6 w2) / 8 = 0.36 ( [2+6] в знаменателе - это масса получившегося раствора [2 кг+6 кг])
2 случай Возьмем для определенности равные массы, равные 1 кг. Масса m2 кислоты в получившемся растворе: m2 = w1 + w2 Массовая доля w4 кислоты в полученном растворе равна по условию 0,32. И она же равна w4 = m2 / 2 = (w1 + w2) / 2 = 0.32 (2 в знаменателе - это масса получившегося раствора [1 кг + 1 кг] )
Получаем систему уравнений относительно w1 и w2: (2 w1 + 6 w2) / 8 = 0.36 (w1 + w2) / 2 = 0.32
2 w1 + 6 w2 = 2.88 w1 + w2 = 0.64
Из второго уравнения w1 = 0.64 - w2 Подставляем это выражение для w1 в первое уравнение: 2 (0,64 - w2) + 6 w2 = 2.88 1.28 - 2 w2 + 6 w2 = 2.88 1.28 + 4 w2 = 2.88 4 w2 = 1.6 w2 = 0.4 = 40% Отсюда w1 = 0.64 - w2 = 0.64 - 0.4 = 0.24 = 24%
ответ: концентрация первого раствора - 24%, второго раствора - 40%
Примечание. Во втором случае можно брать не по одному килограмму, а по х килограммов раствора. Но это дела не меняет: m2 = x w1 + x w2 w4 = m2 / (x + x) = (x w1 + x w2) / 2x = x(w1 + w2) / 2x = (w1 + w2) / 2 (х + х) - это масса получившегося раствора. Как видим, х сокращается, и получаем тот же результат: w4 = (w1 + w2) / 2
Пусть х км в час - скорость автомобиля, у км в час- скорость трактора. За 3 часа автомобиль проехал 3х км. Трактор до момента встречи ехал на 15 мин. меньше. 3 часа - 15 мин = 2 часа 45 мин =2,75 часа и проехал путь, равный 2,75у км. Транспортные средства встретились, значит проехали путь от А до В. (3х+2,75у ) км - расстояние от А до В.
Автомобиль проехал (6х+5,5у) со скоростью х км в час и затратил на путь туда и обратно (6х+5,5y)/x часов. Трактор проехал (3х+2,75у) со скоростью у км в час и затратил (3х+2,75у)/у часов. По условию трактор находился в пути на 15 мин =1/4 часа меньше. Составляем уравнение: ((6х+5,5y)/x) - ((3х+2,75у)/у)= 1/4 . Делим каждое слагаемое числителя первой дроби на х, каждое слагаемое числителя второй дроби на у: 6+5,5 (у/х) - 3(х/у) -2,75=0,25. Пусть х/у=t, тогда у/х = 1/t 3t-(5,5/t)-3=0 3t²-3t-5,5=0 6t²-6t-11=0 D=36+264=300 t=(6+√300)/12=(6+10√3)/12=(3+5√3)/6 t=(6-√300)/12 <0 и не удовлетворяет условию задачи