Область определения функции - это та область(множество значений), где функция вообще существует(определена). У вас функция вида y = √(x). Корень квадратный не может быть меньше нуля(может на самом деле, но это совсем другая история), значит и Ваша функция не может быть меньше нуля! Давайте найдем область определения: y = √(x-1)(x+2) √(x-1)(x+2) >= 0 (больше либо равно 0) Значит и (x-1)(x+2)>=0 Решаем неравенство Пусть (x-1)(x+2) = 0 Мы видим два корня х = 1 и х = -2 Отмечаем их на числовой прямой (-2)(1) Наносим знаки слева направо с + +___(-2)-(1)+ Поскольку нам нужны интервалы больше 0, то выбираем +. Это и будет областью определения. ответ: x <= -2 x >= 1 Еще можно записать ответ так: (-бесконечность; -2] и [1;+бесконечность) Квадратные скобки означают, что данное значение входит в область определения. Записывает как вам удобно.
Например: 5x – 4y + 6 = 0 .
Выразим y:
⇒ 4y = 5x + 6 ⇒ y = 5x+64 ⇒ y = 1,25x + 1,5 .
Полученное уравнение, равносильное первому, имеет вид
y = kx + m ,
где: x — независимая переменная (аргумент);
y — зависимая переменная (функция);
k и m — коэффициенты (параметры).