Пусть его скорость была -хкм/ч. первый за 2 часа проехал 16*2=32 км, что бы его догнать нужно 32/(х-16) часов. второй за 1 час проехал 10 км, что бы догнать второго нужно 10/(х-10) часов. разница в гонке между ними известно по условию. состовляем уравнение 32/(х-16)-10/(х-10)=4,5 32х-320-10х+160=4,5(х-10)(х-16) при х≠10 и х≠16 22х-160=4,5(х²-26х+160) 4,5х²-139х+880=0 д=59² х1=(139+59)/9=22 х2=(139-59)/9=8.(8) так как х2< 10 то это не может быть решением, так как он никогда не догнал бы даже второго велосипедиста. получаем ответ при х=22км/ч ответ: 22 км/ч
Пусть угол KPD - a, угол MNB - b, а угол MPD - c. a=4(b+c)(по условию), b=c(соответственные углы), a+c=180°(смежные углы). Составляем систему: a+b=180° и a=8b => a+b=180° и a=8b => 8b+b=180° и a=8b => 9b=180° и a=8b => b=20° и a=160° ответ: a=160°, b=20°, c=20°.
Если угол C и угол BDC равны 60°, то и угол DBC равен 60°, следовательно, треугольник BDC - равносторонний, а BC и BD равны 5 см. Если угол BDC равен 60°, а угол ABD равен 30°, то угол ADB равен 120° (как смежный с BDC), а угол BAD равен 30°, следовательно, треугольник ABD - равнобедренный, а AD равно 5 см. AC=5 см + 5 см = 10 см ответ: AC=10 см, AD=5 см.