М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Glek11
Glek11
01.12.2020 06:20 •  Алгебра

решить, 1.1.1. Профсоюзное бюро факультета, состоящее из 9 человек, на своём
заседании должно избрать председателя, его заместителя и казначея. Сколько различных случаев при этом должно быть?
1.1.2. Старший менеджер офиса фирмы должен отправить в командировку группу из 5 человек. Сколько таких групп можно составить из 12 сотрудников офиса, занимающих одинаковые должности и выполняющих одинаковые функции?

👇
Ответ:
annayotubeanna
annayotubeanna
01.12.2020

1.1.1: 504 варианта

1.1.2: 792 варианта

Объяснение:

1.1.1. Поскольку все 3 выборных должности различны, то при выборе 3 из 9 кандидатов также важен и порядок выбора. То есть требуется найти число размещений 3 элементов (выборные должности) из 9 (число кандидатов).

Это производится по формуле:

A_n^k=\frac{n!}{(n-k)!}=n\cdot (n-1)\cdot ... \cdot (n-k+1)

В нашем случае n=9; k=3. Т.е.

A_9^3=\frac{9!}{(9-3)!}= \frac{1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot8\cdot9}{1\cdot2\cdot3\cdot4\cdot5\cdot6} = \\ =7\cdot8\cdot9 = 504

ответ: 504 различных случая возможно.

1.1.2

Поскольку у нас нет известных различий среди 5 командированных сотрудников, то порядок их выбора значения не имеет (размещение элементов внутри выборки не учитывается - считается как 1 вариант), то при выборе 5 человек из 12 кандидатов порядок выбора не важен. То есть требуется найти число сочетаний 5 элементов (число командировок) из 12 (число кандидатов).

Это производится по формуле:

C_n^k=\frac{n!}{(n-k)!\cdot k!}

В нашем случае n=15; k=5. Т.е. число сочетаний равно

C_{12}^5=\frac{12!}{(12-5)!\cdot 5!} = \frac{12!}{7!\cdot 5!} = \\ = \frac{\cancel{1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7 \: }\cdot{ 8 }\cdot9\cdot\cancel{ \: 10 \: }\cdot11 \cdot\cancel{ \: 12} \: }{ \cancel{1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7 \: }\cdot1\cdot\cancel{ \: 2 \: }\cdot\cancel{ \: 3 \: }\cdot\cancel{ \: 4 \: }\cdot\cancel{ \: 5 \: }} = \\ = 8 \times 9 \times 11 = 792

792 варианта групп

4,6(17 оценок)
Открыть все ответы
Ответ:
murplushka
murplushka
01.12.2020

y = x³ - 4x²

Найдём производную :

y' = (x³)' - 4(x²)' = 3x² - 8x

Найдём критические точки, для этого приравняем производную к нулю.

y' = 0

3x² - 8x = 0

x(3x - 8) = 0

x_{1}=0\\\\x_{2}=2\frac{2}{3}

Отметим критические точки на числовой прямой и выясним знаки производной на промежутках, на которые эти точки разбивают числовую прямую .

y'(x)         +                       -                                 +

____________0___________2 2/3_____________

y(x)        ↑                        ↓                                ↑

На промежутках (- ∞ ; 0]  и  [2 2/3 ; + ∞) -функция возрастает

На промежутке [0 ; 2 2/3] - функция уюывает

4,6(60 оценок)
Ответ:
Pailevanyan
Pailevanyan
01.12.2020
1)a) y = 7x + 8 Область определения- любые значения x, то есть
x э (- бесконечности;+бесконечности)
б) y = 2/(3x + 9) Знаменатель дроби не должен равняться нулю
3x + 9 не равно 0,     x не равен - 3, значит область определения
x э (- бесконечности; - 3) U (- 3; + бесконечности)
в) y = (x + 3)² - область определения любые значения х, то есть
x э (- бесконечности;+бесконечности)
2a) y = 1/(3x² +2x + 3)
3x² + 2x + 3 не должно = 0
3x² + 2x + 3 = 0
D/4 = 1 - 9= - 8
Дискриминант отрицательный, а старший член положительный, значит
3x² + 2x + 3 > 0 при любых х, значит область определения
x э (- бесконечности;+бесконечности)
б) q(x) = 40/(1-x)
1 - x не равно 0 , значит x не равен 1, тогда область определения
x э (- бесконечности; 1) U (1; + бесконечности)
4,6(21 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ