Поскольку модуль слева это модуль от суммы положительного числа 3 и модуля, то большой модуль положителен и раскрывается как уравнение вида abs(x+2)+3=4 и решается как abs(x+2)=1 и x+2=1 или x-2=-1. а если бы у тебя было бы уравнение abs(abs(x+2)-3)=4, то пришлось бы рассмотреть уравнения abs(x+2)=4 и abs(x+2)=-4 только когда у тебя по модулем находится сумма положительного числа и модуля от выражения, содержащего переменную x ты рассматриваешь уравнение в варианте (заменяешь скобки модуля на обычные скобки) поскольку при сложении положительного числа и модуля какого-либо выражения их сумма не может быть отрицательна.
Пусть xo - корень этого уравнения, тогда -xo также корень. Проверка:
Получилось тоже самое уравнение. Значит:
Подставим это значение в уравнение:
Не торопимся записывать эти значения в ответ. Обратите внимание, что это только претенденты на ответ. Теперь каждое значение нужно аккуратно подставить в изначальное уравнение, и проверить, на количество корней. Те значение. которые будут давать больше 1 корня, мы в ответ записывать не будем(по условию).
Решаем это уравнение с модулями на промежутках.
Заметим, что это ситуация аналогична пункту 2, решений тут нет.
Теперь складываем все полученные корни и того: 1 корень. Значит это значение пойдет в ответ.
Это значение не подходит, так как тут целых 3 корня.
Заметим, что это уравнение копия уравнения, при a=3, значит тут будет всего 1 корень, и это значение нм подходит.
произведем сложение
Объяснение:
получаем
2х=9
х=4,5
подставим в первое:
4,5+у=4
у=4-4,5
у= (-0,5)
нашли х и у