М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alenavasina20
alenavasina20
13.03.2020 20:17 •  Алгебра

Задание 7 класса нужно алгебраическое решение


Задание 7 класса нужно алгебраическое решение

👇
Ответ:
ainura19921
ainura19921
13.03.2020

произведем сложение

Объяснение:

получаем

2х=9

х=4,5

подставим в первое:

4,5+у=4

у=4-4,5

у= (-0,5)

нашли х и у

4,4(22 оценок)
Открыть все ответы
Ответ:
REIIKA
REIIKA
13.03.2020
Поскольку модуль слева это модуль от суммы положительного числа 3 и модуля, то большой модуль положителен и раскрывается как уравнение вида abs(x+2)+3=4 и решается как abs(x+2)=1 и x+2=1 или x-2=-1.   а если бы у тебя было бы уравнение abs(abs(x+2)-3)=4, то пришлось бы рассмотреть уравнения abs(x+2)=4 и abs(x+2)=-4 только когда у тебя по модулем находится сумма положительного числа и модуля от выражения, содержащего переменную x ты рассматриваешь уравнение в варианте (заменяешь скобки модуля на обычные скобки) поскольку при сложении положительного числа и модуля какого-либо выражения их сумма не может быть отрицательна.
4,8(54 оценок)
Ответ:
klochkovanastsy
klochkovanastsy
13.03.2020
\sqrt{x^4+(a-5)^4}=|x+a-5|+|x-a+5|

Пусть xo - корень этого уравнения, тогда -xo также корень. Проверка:

\sqrt{(-x_o)^4+(a-5)^4}=|-x_o+a-5|+|-x_o-a+5|

\sqrt{x_o^4+(a-5)^4}=|-(x_o-a+5)|+|-(x_o+a-5)|

\sqrt{x_o^4+(a-5)^4}=|x_o-a+5|+|x_o+a-5|

Получилось тоже самое уравнение. Значит:

x_o=-x_o

2x_o=0

x_o=0

Подставим это значение в уравнение:

\sqrt{(a-5)^4}=|a-5|+|-a+5|

(a-5)^2=|a-5|+|-(a-5)|

(a-5)^2=|a-5|+|a-5|

|(a-5)|^2=2|a-5|

|(a-5)|^2-2|a-5|=0

|a-5|(|a-5|-2)=0

a=5, a=7,a=3

Не торопимся записывать эти значения в ответ. Обратите внимание, что это только претенденты на ответ. Теперь каждое значение нужно аккуратно подставить в изначальное уравнение, и проверить, на количество корней. Те значение. которые будут давать больше 1 корня, мы в ответ записывать не будем(по условию).

a=3

\sqrt{x^4+16}=|x-2|+|x+2|

Решаем это уравнение с модулями на промежутках.

1)x\in(-\infty ;-2]

\sqrt{x^4+16}=-x+2-x-2

\sqrt{x^4+16}=-2x

x^4+16=4x^2

x^4+16-4x^2=0

x^2=t;t \geq 0

t^2-4t+16=0

D=16-16*4

2) x\in(-2;2]

\sqrt{x^4+16}=-x+2+x+2

\sqrt{x^4+16}=4

x^4+16=16

x=0

3)x\in (2;+\infty)

\sqrt{x^4+16}=x-2+x+2

\sqrt{x^4+16}=2x

Заметим, что это ситуация аналогична пункту 2, решений тут нет.

Теперь складываем все полученные корни и того: 1 корень. Значит это значение пойдет в ответ.

a=5

\sqrt{x^4}=|x|+|x|

x^2=2|x|

|x|(|x|-2)=0

x=0,x=2,x=-2

Это значение не подходит, так как тут целых 3 корня.

a=7

\sqrt{x^4+16}=|x+2|+|x-2|

Заметим, что это уравнение копия уравнения, при a=3, значит тут будет всего 1 корень, и это значение нм подходит.

ответ: a=3,a=7.
Найдите все значения а при которых уравнение имеет одно решение.
4,4(13 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ