Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и все их возможные суммы (по 2, по 3 и т.д.) выписывают на доске в порядке неубывания. Если какое-то число n, а остальные числа равные n стираются. Например, задуман набор 2, 3, 4, а на доске в итоге будут выписаны числа 2, 3, 4, 5, 6, 7, 8, 9. Какие числа были задуманы, если в итоге на доске оказались записаны числа 1, 3, 4, 7, 8, 10, 11, 14?
В нашем уравнении: b= -(a-6); c=(a^2-9).
Старший коэффициент "a" = (a+3). Он не должен равняться нулю ( при а=-3), т.к. уравнение уже не будет квадратным. Поэтому,а=-3 нас не устраивает.
1). b=0
a-6=0
a=6
2)c=0
a^2-9=0
a^2=9
a1=-3 ( нам не подходит этот вариант)
a2=3
При а =3 уравнение выглядит так: 6x^2+3x=0
При а=6 уравнение выглядит так:9x^2+27=0
ответ: a=3; a=6