М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
azharik2k17
azharik2k17
22.11.2021 21:39 •  Алгебра

Расстояние от пристани А до пристани В по течению реки катер за 3 ч., а от пристани А до пристани В против течения — за 3,7 ч.
Обозначив собственную скорость катера — b км/ч, скорость течения реки — п км/ч, составь математическую
модель данной ситуации.
а) Найди скорость катера по течению, скорость катера против течения.
Б) Найди расстояние, пройденное катером по течению.
C) Найди расстояние, пройденное катером против течения.
d) Сравни найденные в пункте с расстояния. Результат сравнения запиши в виде математической модели.
ответ:
а) скорость катера по течению реки
км/ч; против течения реки -
км/ч;
b) расстояние, пройденное катером по течению:
KM;
С) расстояние, пройденное катером против течения:
KM;
d) найденные расстояния будут (запиши прилагательное)
Т. е.
КМ.​

👇
Открыть все ответы
Ответ:
vesnasurgut
vesnasurgut
22.11.2021
(√3cos2x +sin2x)² =7 +3cos(2x -π/6) ;
очевидно:
cos(2x -π/6) =cos2x*cosπ/6 +sin2x*sinπ/6 =cos2x*√3 /2 +sin2x*1/2 =(√3cos2x+sin2x) /2  ⇒ √3cos2x+sin2x =2cos(2x -π/6) ,  поэтому  производя  замену   t = cos(2x -π/6) ; -1≤ t  ≤1 исходное   уравнение принимает вид:
4t²  -3t -7 =0 ;  D =3² -4*4*(-7) =9 + 112 =121 =11²
t₁ =(3+11) / 8  =  7/4 >1  не решение
t₂ = (3 -11) / 8  = -1 ⇒(обратная замена)
cos(2x -π/6) = -1  ⇒ 2x - π/6 =π +2π*n , n ∈Z ;
x =7π/12 + π*n , n ∈Z .

ответ: 7π/12 + π*n , n ∈Z .

* * * * * * *
√3cos2x +sin2x= 2( (√(3) /2)* cos2x +(1/2)*sin2x )=
2(cos2x*cosπ/6 +sin2x*sinπ/6)=2cos(2x - π/6) 
вообще (формула  вс угла ) :
acosx +bsinx =√(a² +b²)*(a/√(a² +b²) *cosx +b/√(a² +b²)*sinx) =
 √(a² +b²)*(cosα *cosx +sinα*sinx) =√(a² +b²)*cos(x - α) , где α =arcctqa/b 
4,4(7 оценок)
Ответ:

Дана функция y(x) = x³ – 3x + 3.  

1) Область определения функции. Так как функция не имеет дроби или корня, то нет ограничения в области её определения.  

D(y) = (−∞; +∞).

2) Четность и нечетность функции:  

Проверим функцию -  четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем: f(-x)=(-x)^3-3*(-x)+3=-x^3+3x+3≠f(x)≠-f(x).

3начит, функция не является ни чётной, ни нечётной.

3) Определим точки пересечения графика функции с осями координат.

Найдем точки пересечения с осью ординат Oy, для чего приравниваем x = 0: у = 0³ – 3*0 + 3 = 3.

Таким образом, точка пересечения с осью Oy имеет координаты (0;3).

Найдем точки пересечения с осью абсцисс Ox, для чего надо решить кубическое уравнение x³ – 3x + 3 = 0.

Для вычисления корней данного кубического уравнения используем формулы Кардано.

Для начала нам надо привести наше уравнение до вида:  

y³ + py + q = 0. Для этого используются следующие формулы:

p=-b^2/(3a^2 )+c/a;  q=(2b^3)/(27a^3 )-bc/(3a^2 )+d/a,

где a - коэффициент при x³,

b - коэффициент при x²,

c - коэффициент при x,

d - свободный член.

Подставим наши значения в данные формулы, мы получим:

p=-0^2/(3*1^2 )+(-3)/1=-3;  q=(2*0^3)/(27*1^3 )-(0*(-3))/(3*1^2 )+3/1=3.

вычислим количество корней кубического уравнения. Если:

Q > 0 — один вещественный корень и два сопряженных комплексных корня;

Q < 0 — три вещественных корня;

Q = 0 — один однократный вещественный корень и один двукратный, или, если p = q = 0, то один трехкратный вещественный корень.

В нашем случае Q = 1,25, будем иметь один вещественный корень и два сопряженных комплексных корня.

А сами корни найдём по следующим формулам:

x_1=α+β-b/3a;

x_2,3=-(α+β)/2-b/3a∓i (α-β)/2 √3  ;

где   α=(-q/2+√Q)^(1/3)  ,   β=(-q/2-√Q)^(1/3).

Подставив наши значения в вышеуказанные формулы вычислим, что:

α = −0,7256, β = −1,3782.

x1= −2,1038;  x2,3 = 1.0519 ± i•0,5652.

4) Стационарные точки , интервалы возрастания и убывания функции , экстремумы функции

Исследуем функцию на экстремумы и монотонность. Для этого найдем первую производную функции: y’ = (x3 – 3x + 3)’ = 3x2 – 3 = 3(x2 – 1).  

Приравняем первую производную к нулю и найдем стационарные точки (в которых y′=0): 3(x2 – 1) = 0, x = ±1.

Получили две критических точки:  х = -1 и х = 1.  

Разобьем всю область определения функции на интервалы данными точками и определим знаки производной в каждом промежутке:

x = -2 -1 0 1 2

y' = 9 0 -3 0 9

При x ∈ (−1; 1) производная y′ < 0, поэтому функция убывает на данном промежутке.

При x ∈ (-∞; -1) U (1; ∞) производная y′ > 0, функция возрастает на данных промежутках. При этом x = -1 - точка локального максимума (функция возрастает, а потом убывает, x = 1 - точка локального минимума (функция убывает, а потом возрастает.

Значение функции в этих точках: у(-1) = 5,  у(1) = 1.

5) Дополнительные точки для построения графика функции  y(x) = x3 − 3x + 3:

 

x y

-3.0 -15

-2.5 -5.1

-2.0 1

-1.5 4.1

-1.0 5

-0.5 4.4

0 3

0.5 1.6

1.0 1

1.5 1.9

2.0 5

2.5 11.1

3.0 21

 

6) По полученным данным строим график, и отметим характерные точки (пересечения с осями и экстремумы).

График функции и это же решение с правильным форматированием приведены во вложении.

 

4,6(89 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ