5x^2+3x-2 / 10x^2+x-2
Решим каждое выражение по формуле дискриминанта:
5x^2+3x-2=0
D= 9+40=49
корень из D=7
x1= -3-7/10= -1
x2= -3+7/10= 0,4
Используя это, выражение можно представить так: (впереди всегда ставится первый коэфицент, в данном случае 5, а остальное раскладываем на скобки ... затем пять умножаем на вторую скобку, чтобы избавиться от дроби 0,4)
5x^2+3x-2= 5(x+1)(x-0,4)= (x+1)(5x-2)
Тоже самое делаем со вторым выражением:
10x^2+x-2=0
D=1+80=81
корень из D=9
x1= -1-9/20= -0,5
x2= -1+9/20= 0,4
Тут все так же. Впереди 10, но мы раскладываем десятку на 2 и 5, и умножаем на "удобные" скобки, чтобы избавиться от дробей.
10x^2+x-2= 10(x+0,5)(х-0,4)= (2х+1)(5х-2)
Заменяем данные выражения - получившимися:
(х+1)(5х-2) / (2х+1)(5х-2)= х+1 / 2х+1
При делении скобка (5х-2) сократится.
Окончательный ответ дробь х+1 / 2х+1
Это все :) Объяснила, как смогла, удачи))
Если что, во вложениях формулы для решения дискриминанта!
Пусть A - событие, что в сумме выпадет 7 очков;
n - общее количество исходов;
m - количество благоприятствующих событию A исходов;
n = 6 · 6 · 6 = 216;
Варианты, при которых в сумме получится 7 очков:
1 + 1 + 5; 1 + 2 + 4; 1 + 3 + 3; 1 + 4 + 2; 1 + 5 + 1; 2 + 1 + 4; 2 + 2 + 3; 2 + 3 + 2; 2 + 4 + 1; 3 + 1 + 3; 3 + 2 + 2; 3 + 3 + 1; 4 + 1 + 2; 4 + 2 + 1; 5 + 1 + 1.
Получилось 15 комбинаций m = 15;
Вероятность события A:
P(A) = m/n = 15/216 = 0,07.
ответ: Вероятность, что суммарно получится 7 очков P(A) = 0,07.