№1. а) (3-5х)(х+11) - 33 = 3х + 3*11 - 5х * х -5х *11 - 33 = = 3х + 33 - 5х² - 55х - 33 = - 5х² - 52х можно еще вынести общий множитель : = - х (5х +52)
б) 5а×2 + (11+а)(3-5а) = 10а + 33 - 55а +3а - 5а² = = -5а² - 42а +33 или 5а² + (11+а)(3-5а) = 5а² + 33 - 55а +3а -5а²= = -52а + 33 в следующий раз используй знак степени " ^ " , например: а^2 - это a во 2-й степени у^3 - это у в 3 -ей степени и т.д.
в) ab -ac -7b +14c = если условие записано верно , то многочлен в "чистом виде" на множители не раскладывается: = а (b-c) - 7b +7c +7c = = a(b-c) - 7(b-c) + 7c = = (a-7)(b-c) + 7c но! если условие выглядело так : ab -2ac -7b +14c , то получится совсем другой результат: ab - 2ac -7b +14c = a(b -2c) -7(b - 2c) = (a-7)(b-2c)
Например для такого рода задач: задача Найдите сумму всех двузначных чисел, которые при делении на 4 дают в остатке 3
наименьшее такое двузначное -- первый член прогрессии находим (в виду небольшого делителя) достаточно легко перебором 10- наименьшее двузначное число 10:4=2(ост 2) 11:4=2(ост 3) 11 - первый член прогрессии (либо оценивая по общей формуле с нахождения наименьшего(наибольшего) натурального удовлетворяющего неравенство так как при делении на 4 остаток 3 общая форма 4k+3 4k+3>=10 4k>=10-3 4k>=7 4k>=7:4 k>=1.275 наименьшее натуральное k=2 при k=2: 4k+3=4*2+3=11 11 -первый член )
далее разность прогрессии равна числу на которое делим т.е. в данном случае 4
далее ищем последний член прогрессии 99- наибольшее двузначное 99:4=24(ост3) значит 99 - последний член прогрессии (либо с оценки неравенством 4l+3<=99 4l<=99-3 4l<=96 l<=96:4 l<=24 24 - Наибольшее натуральное удовлетворяющее неравенство при l=24 : 4l+3=4*24+3=99 99- последний член прогрессии ) далее определяем по формуле количество членов и находим сумму по формуле ответ: 1265
2 6 18
Объяснение:
2+6+18=26
4+36+324=364