М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
hgjgz8s8tztcv
hgjgz8s8tztcv
13.11.2022 02:38 •  Алгебра

Решите неравенства из приложения


Решите неравенства из приложения

👇
Ответ:
5class1i
5class1i
13.11.2022

1)9x2≤-25-30x

9x2+30x+25≤0

x≤-30/18

x≤1.6666

2)3x2-x<0

x(3x-1)<0

x<0 3x-1>0

3x>1

x=1/3

4,6(85 оценок)
Открыть все ответы
Ответ:
Марат991
Марат991
13.11.2022
Найдите производную функции:

а) y' = (cos x – 2x^5)' = -sinx-10x ;   б) y' = (13x^2 + 1/2x^4)' = 26x+2x  в) y'  = ((8x^2 + x^5)(3x^3 – x^2))' = (8x^2+x^5)'*(3x^3-x^2) +(8x^2+x^5)(3x^3-x^2)' =   (16x+5x^4)(3x^3-x^2) +(8x^2+x^5)(9x^2-2x)    г) у'  = (х√х^4)' =(x^3)' = 3x^2.

2. Найдите тангенс угла наклона касательной, проведенной к графику функции у = 2х^2 в его точке с абсциссой х0 = –1.
Тангенс угла наклона равен производной в этой точке y' = (2x^2)' = 4x y(-1) = 4(-1) = -4

3. Найдите угловой коэффициент касательной, проведенной к графику функции у = 1/3х3 в его точке с абсциссой х = – 1. Угловой коэффициент касательной равен производной в этой точке y' = (1/3)x^3)' = x^2 y(-1) = (-1)^2 = 1
4. Функция f(x) возрастает на промежутках (– 5; –2) и (6;10) и убывает на промежутке (– 2;6). Укажите промежутки, на которых производная функции: f '(x) > 0; f '(x) < 0.  f '(x) > 0  на промежутках (-5;-2) и (6;10)  ; f '(x) < 0.   на промежутке (-2;6)

5. Найдите множество первообразных функции:

а) f(x) = 5х – cos x; F(x) = (5/2)*x^2 - sinx+C    б) f(x) = 4x^3 + 2x;  F(x) = x^4+x^2+C в) f(x) = –1/2x + 8. F(x) = (-1/4)*x^2+8x+C

6. Вычислите интеграл: а) б) в)

7. Вычислите площадь фигуры, ограниченной линиями: у = х2, у = 0,

х = 4. Sф = интегр(от x1 =0 до x2 = 4)(x^2dx) = (1/3)x^3I(от x1 =0 до x2 = 4) = (1/3)*4^3-0 =64/3 =21,333
4,5(35 оценок)
Ответ:
vovakornev2002
vovakornev2002
13.11.2022
Левая часть неравенства должна существовать, поэтому 
a + x >= 0,
a - x >= 0

Переписываем систему в виде
-a <= x <= a,
|x| <= a
откуда видно, что a >= 0.
Можно сразу записать, что если a < 0, то решений нет.

Тогда обе части исходного неравенства неотрицательные, и можно возводить в квадрат.
a + x + 2sqrt(a^2 - x^2) + a - x > a^2
sqrt(a^2 - x^2) > a(a - 2)/2

Если правая часть отрицательна, то решение неравенства - все значения, при которых корень существует.
a(a - 2)/2 < 0 при 0 < a < 2, так что еще одна часть ответа такова: если 0 < a < 2, то -a <= x <= a.

Осталось рассмотреть случай, когда a(a - 2) >= 0. Тогда вновь можно возводить неравенство в квадрат.
a^2 - x^2 > (a^4 - 4a^3 + 4a^2)/4
x^2 < a^3 (4 - a)/4.

У этого неравенства есть шанс иметь решения, если правая часть строго положительна, поэтому предпоследняя часть ответа: если a = 0 или a >= 4, решений нет. Осталось рассмотреть последний случай 2 <= a < 4.

Заметим, что при таких a правая часть меньше a^2, ведь 
a^3 (4 - a) / 4 / a^2 = a (4 - a) / 4 < 2 * (4 - 2) / 4 = 1 (известно, что квадратичная парабола a (4 - a) / 4 достигает максимального значения в вершине), поэтому все корни существуют, и последняя часть ответа: если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2.

Собираем всё в одно и получаем ответ.
ответ. Если 0 < a < 2, то -a <= x <= a; если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2, для остальных a решений нет.
4,8(64 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ