Получаем, что для заполнения сосуда требуется 24n часов работы. Если все краны открываются одновременно, то для пополнения всего сосуда потребуется дробь, числитель — 24n, знаменатель — n =24 часа.
Поскольку переменная х входит в чётной степени, то график заданной функции симметричен относительно оси у. Производная этой функции равна нулю пр х = 0. Подставив это значение в уравнение функции, получаем у = 1. Исследуем поведение производной вблизи точки х = 0. х 0.5 0 -0.5 у' -0.6875 0 0.6875. Производная переходит с + на -, значит, при х = 0 имеем максимум функции, равный у = 1. Минимальное значение на заданном отрезке найдём, подставив значение х = +-3 в уравнение (достаточно х = 3, так как функция чётная) ymin = 1-3⁴-3⁶ = 1-3⁴*(1+3²) = 1-81*(1+9) = 1-810 = -809. ответ при (х=+-3) : умакс = 1, умин = -809.
Решение.
Пусть первый кран работал (n − 1)d + 8 часов, тогда второй кран работал (n − 2)d + 8 часов, ..., n-й кран — 8 часов. Тогда
дробь, числитель — (n минус 1)d плюс 8, знаменатель — 8 = дробь, числитель — 5, знаменатель — 1 равносильно (n минус 1)d=32,
(n минус 1)d плюс 8 плюс (n минус 2)d плюс 8 плюс ... плюс 8=d умножить на дробь, числитель — (n минус 1)n, знаменатель — 2 плюс 8n=16n плюс 8n=24n.
Получаем, что для заполнения сосуда требуется 24n часов работы. Если все краны открываются одновременно, то для пополнения всего сосуда потребуется дробь, числитель — 24n, знаменатель — n =24 часа.
Объяснение: