М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
сонечка281006
сонечка281006
31.08.2020 01:09 •  Алгебра

Решить ! график функции y=kx+3 проходит через точку n(-8; 19). найдите k

👇
Ответ:
Y=kx+3
X=-8
Y=19
19=-8k+3
8k=-16
K=-2
4,7(12 оценок)
Открыть все ответы
Ответ:
Herty22436
Herty22436
31.08.2020
В решении выше допущено 2 ошибки.
Первая ---арифметическая: -3+2=-1, а не -5;
вторая, более существенная, связана с неравносильностью преобразований.

Правильный ответ: х=3.

Прежде всего заметим, что при возведении уравнения в квадрат могут появиться новые корни, а именно корни уравнения -(х-1)=sqrt(2x^2-3x–5). Это произойдёт в том случае, если (х-1) < 0, т. е. при x < 1.
Если же х-1 >= 0, то корень уравнения (х-1)^2=(sqrt(2x^2-3x–5))^2 будет также корнем исходного уравнения. Таким образом, исходное уравнение эквивалентно
не уравнению
(х-1)^2=2x^2-3x–5,

а системе
(х-1)^2=2x^2-3x–5,
x >=1.

Сначала решаем уравнение:
(х-1)^2=2x^2-3x–5
2x^2-3x–5-x^2+2x-1=0
x^2-x-6=0
x1=3, x2=-2.
Второй корень не удовлетворяет условию x >=1, и, следовательно, не является корнем исходного уравнения. (Действительно, в этом случае sqrt(2x^2-3x–5)=3, а х-1=-3).
Первый корень удовлетворяет условию x >=1, и, следовательно, является также корнем исходного уравнения. (Действительно, в этом случае sqrt(2x^2-3x–5)=2=х-1).
4,7(38 оценок)
Ответ:
lis316721
lis316721
31.08.2020
Что такое подобные одночлены?

Если одночлены состоят из одинаковых переменных в одинаковых степенях, то они являютсяподобными. Коэффициенты одночленов при этом могут различаться. Примеры подобных одночленов:
3a2 и –4a2;      31 и 45;      a2bx4 и 1,4a2bx4;      100y3и 100y3

Но одночлены –6ab2 и 6ab не являются подобными, так как у них переменная b находится в разных степенях.

Подобные одночлены обладают удивительным свойством — их можно легко складывать и вычитать. Если нужно найти сумму двух или более подобных одночленов, то их коэффициенты надо сложить, а переменные в сумме оставить без изменений. Если же требуется найти разность двух подобных одночленов, то коэффициент одного одночлена надо вычесть из второго, а переменные оставить без изменений. Примеры:
4x2 + 15x2 = 19x2
5ab – 1,7ab = 3,3ab
13a10b5c3 – 13a10b5c3 = 0a10b5c3 = 0

Эти действия называются приведением подобных одночленов.

Почему же подобные одночлены можно так складывать и вычитать? Попробуем упростить выражения, не используя правила приведения подобных одночленов:
2x + 4x = (x + x) + (x + x + x + x) = x + x + x + x + x + x = 6 * x = 6x
2x – 4x = (x + x) – (x + x + x + x) = x + x – x – x – x – x = – x – x = – (x + x) = –(2x) = –2x

То есть свойство подобных членов вытекает из правила арифметики о том, что произведение двух чисел является ничем иным как суммой из слагаемых одного числа, где количество слагаемых равно другому числу:
2 * 3 = 3 + 3 = 2 + 2 + 2

4,8(1 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ