См. рисунок в приложении. Строим границы указанных областей. у=2х²+4х-1 - парабола, ветви вверх, вершина в точке (-1;-3) Парабола разбивает плоскость хОу на две части внутреннюю и внешнюю. Чтобы узнать какая из этих областей удовлетворяет неравенству, выбираем произвольную точку, например (0;0) и подставляем её координаты в неравенство 0≥-1 - верно. Значит область, определяемая неравенством у≥ 2х²+4х-1, содержит точку (0;0). Это внутренняя часть параболы.
Строим прямую х+у=2. Она также разбивает плоскость хОу на две полуплоскости. Область определяемая неравенством х+у≥2 расположена ниже прямой. Координаты точки (0;0) удовлетворяют неравенству х+у≤2: 0+0≤2 - верно.
Наибольшую длину имеет отрезок АВ, лежащий на прямой х=-1 О т в е т. р=-1
Надо , понятное дело, понимать что такое вообще область определения функции. А уж потом находить её. итак. Область определения функции - это множество допустимых значений аргумента "х". Что значит: допустимых? А что, бывают недопустимые? Оказывается, что да, бывают. Что это за числа? Это те значения "х", при которых функция не имеет смысла, т.е. её значение нельзя вычислить. Когда это бывает? Ну, мы знаем, что делить на 0 нельзя. и если есть пример у= 1/(х-2) , то понятно, что при любых "х" значение "у" можно посчитать. При любых, кроме х = 2. Значит, это значение недопустимо для данной функции и х=2 в область определения данной функции не входит.Вообще говоря. спотыкаться надо, когда есть действие деление ( делить на 0 нельзя), квадратный корень( под корнем не может стоять отрицательное число, логарифм отрицательного числа и нуля не существует. Во всех остальных случаях можно "х" брать любым.