М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
adri121
adri121
06.06.2023 11:17 •  Алгебра

Вдолгу не останусь,! представить в виде многочлена

👇
Ответ:
Eerow
Eerow
06.06.2023
Дроби буду записывать так " / ", степени так " ^ "
1/4х^2-14ху+48у^2
4,5(47 оценок)
Ответ:
1/4x^2-7xy+49y^2
/ - деление
^ - степень
4,4(17 оценок)
Открыть все ответы
Ответ:
вика3878
вика3878
06.06.2023
Ax+By+C = 0,
где A, B, C - это константы, (A и B одновременно не равны нулю)
Это общее уравнение прямой на координатной плоскости XOY.
Показать (или доказать) это можно разными
Так вот: 6x+3y+18 = 0, это уравнение прямой. Чтобы построить эту прямую на координатной плоскости достаточно найти две различные точки, принадлежащие этой прямой. Найдем какие-либо две точки (два частных решения этого уравнения. Например: положим x_1=0, подставим это в уравнение, получим 3y+18 = 0, <=> y = -18/3 = -6.
Первая точка это x_1=0, и y_1=-6.
Аналогично находим вторую точку прямой:  положим y_2=0, подставим это значение в уравнение прямой, получим 6x+18=0, <=> x=-18/6 = -3.
Вторая точка у нас имеет координаты x_2=-3 и y_2 = 0.
Теперь следует отметить эти точки на координатной плоскости XOY (на графике), затем взять линейку и с ручки или карандаша провести через эти точки прямую линию. Это и будет график данной в условии прямой.
4,7(85 оценок)
Ответ:

1)  Решить систему линейных уравнений (СЛУ) – это значит найти упорядоченный набор значений всех входящих в неё  переменных, который обращает КАЖДОЕ уравнение системы в верное равенство (тождество). Кроме того, система может не иметь решений , то есть быть несовместной.

2)  Решение СЛУ с двумя неизвестными представляет собой пару значений двух переменных  (х,у) , который обращает КАЖДОЕ уравнение системы в верное равенство. Кроме того, система может быть несовместной (не иметь решений).

3)  Система может иметь более одного решения. И если система имеет более одного решения, то таких решений бесчисленное множество .

4)  Система может не иметь решения, то есть она будет несовместной.

5)  Графический метод решения СЛУ с двумя переменными состоит в том, чтобы начертить графики двух заданных уравнений (это будут прямые). Затем уже по графикам можно делать выводы о количестве решений системы и нахождении их, если они существуют.

6)  Если СЛУ с 2 переменными имеет единственное решение, то графики прямых пересекаются в одной точке .

7)  Если СЛУ с 2 переменными  не имеет решений, то графики прямых параллельны.

8)  Если СЛУ с 2 переменными имеет бесчисленное множество решений, то графики прямых совпадают.

4,6(3 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ