Правая часть уравнения должна быть неотрицательной:
То есть первая и третья четверти,где синус и косинус одного знака.
Очевидно,что модуль их суммы будет больше единицы всегда(неравенство треугольника,где в качестве третьей стороны выступает радиус единичной окружности)
Рассмотрим выражение под модулем:
Попробуем найти максимум такой функции
Очевидно,что левая часть принимает наибольшее значение,когда таковое принимает правая.
Правая часть принимает наибольшее значение при
Разделим обе части уравнения на
Очевидно,что синус в первой четверти(для третьей аналогично,так как модуль) больше тогда,когда больше аргумент.
Рассмотрим аргументы обоих синусов на полуинтервале:
Значит:
Рассмотрим аргументы обоих синусов на полуинтервале:
На этом промежутке происходит переход во вторую четверть,где с точностью до наоборот синус большего аргумента имеет меньшее значение.
Значит:
Очевидно,что единственным решением уравнения является:
Правая часть уравнения должна быть неотрицательной:
То есть первая и третья четверти,где синус и косинус одного знака.
Очевидно,что модуль их суммы будет больше единицы всегда(неравенство треугольника,где в качестве третьей стороны выступает радиус единичной окружности)
Рассмотрим выражение под модулем:
Попробуем найти максимум такой функции
Очевидно,что левая часть принимает наибольшее значение,когда таковое принимает правая.
Правая часть принимает наибольшее значение при
Разделим обе части уравнения на
Очевидно,что синус в первой четверти(для третьей аналогично,так как модуль) больше тогда,когда больше аргумент.
Рассмотрим аргументы обоих синусов на полуинтервале:
Значит:
Рассмотрим аргументы обоих синусов на полуинтервале:
На этом промежутке происходит переход во вторую четверть,где с точностью до наоборот синус большего аргумента имеет меньшее значение.
Значит:
Очевидно,что единственным решением уравнения является:
Каждое число можно записать в стандартном виде.
Записать число в стандартном виде, это значит записать его так, чтобы оно было компактным, кратким, более информативным.
Стандартный вид числа записывается так:
а*10∧n, где 1≤а≤10, n-натуральное число.
149500000 км=1,495*10∧8 км
51008300 км²=5,10083*10∧7 км²
0,000 000 000 000 000 000 000 00172 г=1,72*10∧-24
100 000 000 000 000 кл=1*10∧14 кл