х+1 ≤ 0 х²+2x ≤ 0 Вся штука в том, что надо решить каждое неравенство отдельно, а потом оба решения показать на одной числовой прямой и увидеть решение системы а) х +1 ≤ 0 х ≤ -1 -∞ -1 +∞
(-∞; -1] б) х² + 2х ≤ 0 это квадратное неравенство. корни 0 и -2. через эти точки проходит парабола х² +2х -∞ -2 0 +∞ + - + это знаки х² + 2х
х∈ [ -2; 0] теперь ищем общее решение -∞ -2 -1 0 +∞ это решение 1-го неравенства это решение 2-го неравенства ответ: х ∈[-2; -1]
Уравнение ax + by + c = 0 является уравнением прямой, которая в общем виде запишется как у = kx + m, приведем наше уравнение к общему виду линейных функций: ax + by + c = 0, by = - ax - c; y = - a/bx - c/b, где k = - a/b, m = - c/b; График функции будет прямая которая зависит от коэффициентов k и m, рассмотрим каждый случай: а) Для того чтобы прямая была параллельна оси Ох, необходимо чтобы коэффициент около х ( то есть а) равнялся 0 и уравнение прямой примет вид: by + c = 0; б) Для того чтобы прямая была параллельна оси Оy, необходимо чтобы коэффициент около y(то есть b) равнялся 0 и уравнение прямой примет вид: ax + c = 0; в) Чтобы график проходил через начало координат необходимо чтобы с = 0 и уравнение прямой примет вид: ax + by = 0; г) График совпадет с ось Ох (или Oy), когда коэффициент около у (или х) равен 0 и с = 0, тогда имеем: by = 0 - совпадает с ось Ох; (a,c = 0); ax = совпадает с ось Оy; (b,c = 0).
1)7*2x=4
14x=4
x=4/14
2)11x=-24x+396
35x=396
x=396/35
3)x=-3
x=2