3/(2^(2 - x²) -1)² - 4/(2^(2- x²) -1) + 1 ≥ 0 ;
замена : t = 2^(2-x²) -1
3 / t² - 4 / t +1 ≥ 0 ;
(t² - 4t +3) / t² ≥ 0
для квадратного трехчлена t² - 4t +3 t₁=1 корень: 1² - 4*1+3 = 1- 4+3 =0.
t₂ =3/t₁=3/1=1 (или t₂ =4 -1=3)
* * * наконец можно и решить уравнение t² - 4t +3=0 * * *
(t² - 4t +3) / t² ≥ 0 ⇔ (t -1)(t - 3) / t² ≥ 0 .
+ + - +
Объяснение:a)
{ 2^(2-x²) -1 ≤ 1 ; 2^(2-x²) -1 ≠ 0 .⇔ { 2^(2-x²) ≤ 2 ; 2^(2-x²) ≠ 1 . ⇔
{ 2^(2-x²) ≤ 2¹ ; 2^(2-x²) ≠ 2⁰.⇔ {2-x² ≤ 1 ; 2 - x² ≠ 0.⇔{ x² -1 ≥ 0 ; x² ≠ 2⇔
{ (x+1)(x-1) ≥ 0 ; x ≠ ±√2 . ⇒ x∈ ( -∞ ; -√2 ) ∪ (-√2 ; -1] ∪ [1 ; √2) U (√2 ; ∞) .
b)
2^(2-x²) -1 ≥ 3 ⇔ 2^(2-x²) ≥ 4 ⇔2^(2-x²) ≥ 2² ⇔2- x² ≥ 2 ⇔ x² ≤ 0 ⇒ x=0.
ответ: x∈ ( -∞ ; -√2 ) ∪ (-√2 ; -1] ∪ { 0} ∪ [1 ; √2) U (√2 ; ∞) .
a^6-a^2=a^2(a^4-1)=a^2(a^2-1)(a^2+1)=a^2(a-1)(a+1)(a^2+1)
С трех последовательных целых чисел одно обязательно делится на 2, а одно обязательно делится на 3, поэтому произведение обязательно делится на 2*3=6 (2 и 3 - взаимно простые числа)
Значит нам осталось показать, что число a^2(a-1)(a+1)(a^2+1) делится на 5. Если ни одно из чисел а, а-1, а+1 не делится на 5, то число а имеет вид 5b+2 или 5b+3, где b - некоторое целое число
(пояснение число а может иметь вид 5b, 5b+1, 5b+2, 5b+3, 5b+4 так как при делении на 5 возможные остатки 0,1,2,3,4 при первых трех вариантах одно из чисел делится на 5: а=5b, a+1=(5b+4)+1=5b+5=5(b+1), a-1=(5b+1)-1=5b)
Если a=5b+2, то a^2+1=(5b+2)^2+1=25b^2+20b+4+1=25b^2+20b+5=5(5b^2+10b+1) а значит делится на 5,
Если a=5b+3, то a^2+1=(5b+3)^2+1=25b^2+20b+9+1=25b^2+20b+10=5(5b^2+10b+2), а значит делится на5.
Таким образом утверждение верно. Доказано