Решим задачу на движение по воде
Дано:
t(по течению) = 2 ч
t(против течения)=3 ч
v(собств.)=18,6 км/ч
v(теч.)=1,3 км/ч
Найти
S=? км
Решение
1) Найдём скорость катера против течения реки:
v(против течения)=v(собственная) - v (течения реки)=18,6-1,3=17,3 (км/час)
2) Катер плыл 3 часа против течения со скоростью 17,3 км/час. Найдём расстояние, которое катер проплыл против течения:
S(расстояние)=v(скорость)×t(время)
S(против течения)=17,3×3= 51,9 (км)
3) Найдём скорость катера по течению:
v(по течению)=v(собственная) + v (течения реки)=18,6+1,3=19,9 (км/час)
4) Катер плыл 2 часа против течения со скоростью 19,9 км/час. Найдём расстояние, которое катер проплыл по течению:
S(расстояние)=v(скорость)×t(время)
S(по течению)=2×19,9=39,8 (км)
5) Расстояние за 5 часов равно:
S=S(против течения)+S(по течению)=51,9+39,8=91,7 (км)
ОТВЕТ: катер за 5 часов проплыл расстояние 91,7 километров.
КРАТКО
Решим данную задачу по действиям с пояснениями.
1) 18,6 + 1,3 = 19, 9 километров в час - скорость катера по течению реки, так как собственная скорость катера 18,6 километров в час, а скорость течения реки 1,3 километров в час;
2) 18,6 - 1,3 = 17, 3 километров в час - скорость катера против течению реки, так как собственная скорость катера 18,6 километров в час, а скорость течения реки 1,3 километров в час;
3) 3 * 17,3 = 51,9 километров - расстояние, которое проплыл катер против течения реки;
4) 2 * 19,9 = 39,8 километров - расстояние, которое проплыл катер по течения реки;
5) 51,9 + 39,8 = 91,7 километров - такой путь проплыл катер.
ответ: 91,7 километров.
Решим задачу на движение по воде
Дано:
t(по течению) = 2 ч
t(против течения)=3 ч
v(собств.)=18,6 км/ч
v(теч.)=1,3 км/ч
Найти
S=? км
Решение
1) Найдём скорость катера против течения реки:
v(против течения)=v(собственная) - v (течения реки)=18,6-1,3=17,3 (км/час)
2) Катер плыл 3 часа против течения со скоростью 17,3 км/час. Найдём расстояние, которое катер проплыл против течения:
S(расстояние)=v(скорость)×t(время)
S(против течения)=17,3×3= 51,9 (км)
3) Найдём скорость катера по течению:
v(по течению)=v(собственная) + v (течения реки)=18,6+1,3=19,9 (км/час)
4) Катер плыл 2 часа против течения со скоростью 19,9 км/час. Найдём расстояние, которое катер проплыл по течению:
S(расстояние)=v(скорость)×t(время)
S(по течению)=2×19,9=39,8 (км)
5) Расстояние за 5 часов равно:
S=S(против течения)+S(по течению)=51,9+39,8=91,7 (км)
ОТВЕТ: катер за 5 часов проплыл расстояние 91,7 километров.
КРАТКО
Решим данную задачу по действиям с пояснениями.
1) 18,6 + 1,3 = 19, 9 километров в час - скорость катера по течению реки, так как собственная скорость катера 18,6 километров в час, а скорость течения реки 1,3 километров в час;
2) 18,6 - 1,3 = 17, 3 километров в час - скорость катера против течению реки, так как собственная скорость катера 18,6 километров в час, а скорость течения реки 1,3 километров в час;
3) 3 * 17,3 = 51,9 километров - расстояние, которое проплыл катер против течения реки;
4) 2 * 19,9 = 39,8 километров - расстояние, которое проплыл катер по течения реки;
5) 51,9 + 39,8 = 91,7 километров - такой путь проплыл катер.
ответ: 91,7 километров.
интеграл буду писать S
сtg = cos / sin
csc = 1/ sin
ctg^2 = csc^2 - 1
S x^n dx = x^(n+1)/(n+1) + c
S C dx = Cx + C1
S csc²(x) dx = - ctg (x) + C
S ctg^4(x/5) dx =
= (замена u=x/5 dx=5du) =
= 5 S ctg^4(u) du = 5 S ctg^2(u)*ctg^2(u) du = 5 S ctg^2(u)*(csc^2(u) - 1)du = 5 S (ctg^2(u)csc^2(u) - ctg^2(u)) du = 5 S ctg^2(u)*csc^2(u) du - 5 S ctg^2(u) du = (1)
получили разницу двух интегралов
решаем второй S ctg^2(u) du = S (csc^2(u) - 1) du = S csc^2(u) du - S du = (два табличных) = -ctg(u) - u + C
решаем первый S ctg^2(u)*csc^2(u) du = { замена v = ctq(u) dv = - 1/csc^2(u) } = - S v^2 dv = -v^3/3 = - ctg^3(u)/3 + C
(1) итак
- 5ctg^3(u)/3 - 5*(-сtg(u) - u) + C = { делаем обратную замену u = x/5} = 5*( x/5 + ctg(x/5) - ctg^3(x/5)/3) + C
понятно и нравится ставь лайк и лучший