№1.
№2.
ответ:
№3.
а)
f(x) = 19-2x; D(f) = (-∞;+∞)
б)
g(x) = x+1; D(g) = (-∞;+∞)
в)
y(x) = √x; D(y) = [0;+∞)
г)
y = x²-4; D(y) = (-∞;+∞)
Область определения линейных функций (пункты а и б) и квадратных (пункт г) ничто не ограничивает. А вот для квадратного корня есть ограничения - подкоренное выражение не может быть отрицательным (в пункте в) x ≥ 0).
№4.
а)
y = 37x+1; E(y)=(-∞;+∞)
б)
y = -23; E(y) = -23
в)
y = x; E(y) = (-∞;+∞)
г)
y = |x|; E(y) = [0;+∞)
Для линейной функция вида y=kx+b, k≠0, множество значений все действительные числа (пункты а и в). Для линейной функции вида y=b, b - константа, множество значений и есть число b, оно неизменно (пункт б). Множество значений модуля, все неотрицательные числа (пункт г).
ответы на вопросы:
1. Графиком квадратичной функции является парабола.
2. Привести функцию к виду f(x) = ax²+bx+c, абсцисса вершины: , ордината вершины: y₀ = f(x₀) - надо подставить значение x₀ в квадратичную функцию.
3. Направление ветвей зависит от старшего коэффициента.
Если a<0, то ветви направлены вниз;
Если a>0, то ветви направлены вверх.
4. Да, любая парабола имеет ось симметрии, для графика функции y=ax²+bx+c, ось симметрии будет
5. Определяем координаты вершины парабола и направление ветвей. Если вершина ниже оси Ox, а ветви направлены вниз ИЛИ вершина выше оси Ox, а ветви направлены вверх, то искать нули функции (x, при которых график функции пересекает ось Ox) не надо. В остальных двух случаях, находим нули функции.
Составляем таблицу точек, для таких x, что не очень далеко от абсциссы вершины. И заодно находим координаты точки пересечения графика с осью Oy (x=0).
Отмечаем точки из таблицы и вершину на координатной плоскости и проводим параболы, подписываем координаты точек пересечения графика с ось Ox.
В решении.
Объяснение:
По заданному графику определите:
а) область определения функции;
Область определения - это значения х, при которых функция существует. Обозначение D(f) или D(у).
Согласно графика, данная функция существует от х= -5 до х=6.
Кружок у х= -5 закрашен, значит, точка принадлежит числовому промежутку, скобка квадратная.
Кружок у х=6 не закрашен, точка не принадлежит числовому промежутку, скобка круглая.
Область определения функции:
D(f) = х∈[-5; 6).
б) область значений функции;
Область значений функции - это проекция графика на ось Оу. Обозначение Е(f) или Е(у).
Согласно графика, самое меньшее (самое "низкое") значение у= -1, самое большее (самое "высокое") у=5.
Область значений функции:
Е(f) = [-1; 5].
в) значения аргумента, при которых функция равна нулю;
График пересекает ось Ох в двух точках, в этих точках у=0.
у=0 при х=0 и х=1.
г) промежутки возрастания;
Функция возрастает в промежутке при х от -4 до -2 и при х от 0,5 до 6.
Запись: f(x) возрастает при х∈(-4; -2); при х∈(0,5; 6).
д) промежутки убывания.
Функция убывает при х от -5 до -4 и при х от -2 до 0,5.
Запись: f(x) убывает при х∈(-5; -4); при х∈(-2; 0,5).