М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
simpleam
simpleam
20.12.2020 22:35 •  Алгебра

1)sinb/1-cosb+sinb/1+cosb 2)cosb/1-sinb+cosb/1-sinb 3)sina/1+cosa+ctga 4)cosa/1-sina-tga

👇
Ответ:
sofa287
sofa287
20.12.2020
1.Выражение: sin(b)/1-cos(b)+sin(b)/1+cos(b)...Решаем по действиям:   1. sin(b)+sin(b)=2*sin(b)    2. -cos(b)+cos(b)=0           Решаем по шагам:        1. 2*sin(b)-cos(b)+cos(b)     2. 2*sin(b)      ответ: 2*sin(b)
2.выражение    ответ: 2*cos(b)-2*sin(b)
3. выражение   ответ: sin(a)+cos(a)+cos(a)/sin(a)
4,7(20 оценок)
Открыть все ответы
Ответ:
nazirakmtv
nazirakmtv
20.12.2020
Метод 1 из 4: Решение через вычитание1Запишите уравнения в столбик - одно под другим решения вычитанием лучше всего подходит в ситуациях, когда коэффициент одной из переменных одинаков в обоих уравнениях и имеет одинаковый знак. Например, если в обоих уравнениях есть элемент +2х, то надо использовать решение вычитанием.Запишите уравнения так, чтобы переменные х и у и целые числа были друг под другом. Напишите знак вычитания ( - ) за пределами второго уравнения.Пример: Если уравнения: 2x + 4y = 8 и 2x + 2y = 2, то одно из них надо записать над другим и указать знак минус.2x + 4y = 8-(2x + 2y = 2)Реклама2Выполните вычитание. Можно выполнять действия по очереди:2x - 2x = 04y - 2y = 2y8 - 2 = 62x + 4y = 8 -(2x + 2y = 2) = 0 + 2y = 63Решите оставшееся уравнение. Избавившись от одной из переменных, вы можете без проблем найти значение второй.2y = 6Разделите 2y и 6 на 2 и получится y = 34Теперь подставляем значение у в одно из уравнений, решаем и находим значение х.Подставляем y = 3 в уравнение 2x + 2y = 2 и находим x.2x + 2(3) = 22x + 6 = 22x = -4x = - 2Система уравнений решена через вычитание: (x, y) = (-2, 3).5Проверьте ответ. Для этого просто подставьте оба значения в каждое из уравнений и убедитесь, что все сходится. Вот так:Подставляем (-2, 3) вместо (x, y) в уравнение 2x + 4y = 8.2(-2) + 4(3) = 8-4 + 12 = 88 = 8Подставляем (-2, 3) вместо (x, y) в уравнение 2x + 2y = 2.2(-2) + 2(3) = 2-4 + 6 = 22 = 2Метод 2 из 4: Решение через сложение1Запишите оба уравнения в столбик, одно под другим решения через сложение лучше всего подходит в ситуациях, когда коэффициент одной из переменных одинаков в обоих уравнениях, но имеет разный знак. Например, в одном уравнении есть элемент 3х, а в другом -3х.[1]Запишите уравнения так, чтобы переменные х и у и целые числа были друг под другом. Напишите знак сложения ( + ) за пределами второго уравнения.Пример: Если нам даны уравнения 3x + 6y = 8 и x - 6y = 4, то одно из них надо записать над другим и указать знак плюс.3x + 6y = 8+(x - 6y = 4)2Выполните сложение. Можно выполнять действия по очереди:3x + x = 4x6y + -6y = 08 + 4 = 12Получается:3x + 6y = 8+(x - 6y = 4)= 4x + 0 = 123Решите оставшееся уравнение. Избавившись от одной из переменных, вы можете без проблем найти значение второй.4x + 0 = 124x = 12Разделите 4x и 12 на 3 и получится x = 34Теперь подставляем значение у в одно из уравнений, решаем и находим значение у.Подставляем x = 3 в уравнение x - 6y = 4 и находим y.3 - 6y = 4-6y = 1Разделите -6y и 1 на -6 и получится y = -1/6Система уравнений решена через сложение (x, y) = (3, -1/6).5Проверьте ответ. Для этого просто подставьте оба значения в каждое из уравнений и убедитесь, что все сходится. Вот так:Подставьте (3, -1/6) вместо (x, y) в уравнение 3x + 6y = 8.3(3) + 6(-1/6) = 89 - 1 = 88 = 8Подставьте (3, -1/6) вместо (x, y) в уравнение x - 6y = 4.3 - (6 * -1/6) =43 - - 1 = 43 + 1 = 44 = 4
4,5(81 оценок)
Ответ:
Ника6660
Ника6660
20.12.2020
1) Находим область определения функции.
Подкоренное выражение должно быть неотрицательным (≥0)
\left \{ {{x \geq 0} \atop {5- x^{2} \geq 0}} \right.

[0;+∞) U [-√5;√5]⇒x∈[0;√5]
Находим производную
y`=( \sqrt{5- x^{2} })`+( \sqrt{x})`= \frac{1}{2 \sqrt{5- x^{2} } }\cdot (5- x^{2} )`+ \frac{1}{2 \sqrt{x} } = \\ = \frac{1}{2 \sqrt{5- x^{2} } }\cdot (-2 x})+ \frac{1}{2 \sqrt{x} } = \\ =\frac{-2x \sqrt{x} + \sqrt{5- x^{2} } }{2 \sqrt{5- x^{2} } \\sqrt{ x}}
Приравниваем к нулю и находим точки, в которых производная обращается в нуль. Это точки возможных экстремумов.
Для того чтобы узнать есть в них  экстремум или нет, надо воспользоваться достаточным условием: если при переходе через такую точку производная меняет знак с + на -, то это точка максимума, если с - на +, то минимума

y`=0
Дробь равна нулю, когда числитель равен нулю, а знаменатель отличен от нуля.
\left \{ {{-2x \sqrt{x}+ \sqrt{5- x^{2} )} =0} \atop { \sqrt{x} \neq 0;\sqrt{5- x^{2} \neq 0} }} \right.
x≠0
x≠√5
Поэтому исследуем функцию на (0;√5)
√(5-x²)=2x√x
5-x²=4x³
(x-1)(4x²+5x+5)=0
x=1
Считаем у`(2)=(2·2+√(5-4))/2√(5-4)·√2<0
Ставим знак производной минус на (1;√5)
             +                 -
0----------------------------------------(√5)
                         1
                     max

в точке х=1  максимум, так как производная меняет знак с + на -
у(1)=√1 +√5-1=1+2=3

2) аналогично

Находим область определения функции.
Подкоренное выражение должно быть неотрицательным (≥0)
\left \{ {{-x \geq 0} \atop {5- x^{2} \geq 0}} \right.

(-∞;0] U [-√5;√5]⇒x∈[-√5;0]
Находим производную
y`=( \sqrt{-x})`+( \sqrt{5- x^{2} })`= + \frac{1}{2 \sqrt{-x} }\cdot (-x)`+ \frac{1}{2 \sqrt{5- x^{2} } }\cdot (5- x^{2} )`= \\ =\frac{-1}{2 \sqrt{-x} } + \frac{1}{2 \sqrt{5- x^{2} } }\cdot (-2 x}) = \\ = \frac{- \sqrt{5- x^{2} }-2x \sqrt{-x} }{2 \sqrt{5- x^{2} }\sqrt{ -x}}

Приравниваем к нулю и находим точки, в которых производная обращается в нуль. Это точки возможных экстремумов.
Для того чтобы узнать есть в них  экстремум или нет, надо воспользоваться достаточным условием: если при переходе через такую точку производная меняет знак с + на -, то это точка максимума, если с - на +, то минимума

y`=0
Дробь равна нулю, когда числитель равен нулю, а знаменатель отличен от нуля.
\left \{ {{-2x \sqrt{-x}- \sqrt{5- x^{2} )} =0} \atop { \sqrt{x} \neq 0;\sqrt{5- x^{2} \neq 0} }} \right.
x≠0
x≠ -√5
Поэтому исследуем функцию на (-√5;0)
√(5-x²)=-2x√-x
5-x²=4x²·(-х)
4х³-х²+5=0
(x+1)(4x²-5x+5)=0
x=-1-  точка возможного экстремума

находим знак производной в точке х=-2
у`(-2)=(-(√5-4)+4√2 )/2√(5-4)√2>0
                 +                -
(-√5)------------------(-1)----------(0)
                     max

у(-1)=√1+√(5-1)=1+2=3- наибольшее
4,7(70 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ