1) a= 2
2) a= -1
Объяснение:
Применим теорему Виета: если x₁ и x₂ корни уравнения x²+p·x+q=0, то
x₁ + x₂ = -p и x₁ · x₂ = q.
По условию, корни уравнения являются противоположными числами, то есть x₁ = -x₂, тогда x₁≠0 и x₂≠0 и:
-p = x₁ + x₂ = (-x₂) + x₂=0 и q = x₁ · x₂ = (-x₂) · x₂ = -x₂² <0.
Отсюда: p=0 и q<0.
1) Если дано x²+(a-2)·x+(a-6)=0, то по вышесказанному
p=a-2=0 ⇒ a=2 и q=a-6=2-6=-4<0. Тогда
x²+(2-6)=0 ⇔ x²=4 ⇔ x=±2.
2) Если дано x²+(a+1)·x+(a-8)=0, то по вышесказанному
p=a+1=0 ⇒ a= -1 и q=a-8=-1-8=-9<0. Тогда
x²+(-1-8)=0 ⇔ x²=9 ⇔ x=±3.
Для начала решим дискриминант, потом сократим со знаменателем:
y =
Дискриминант: 2x²+5x+2 = 0
a=2 b=5 c=2
D = b²-4ac => 5²-4*2*2 = 25-16 = 9 > 0, 2 корня.
√9 = 3 (можно и в уме)
x =
x₁ =
x₂ =
Теперь подставляем и видим, что действительно можно сократить. Сокращаем и строим таблицу:
y = x+0,5 - линейная функция, графиком является прямая.
Строим таблицу:
Примечание: Подставляем в значение x указанные цифры.
x | 0 1
y | 0,5 1,5
y₁ = 0+0,5 = 0,5
y₂ = 1+0,5 = 1,5
График на фотографии. Заранее