№1 Применяем ограниченность синуса и косинуса -1≤cosx≤1 Преобразуем правую часть по формуле
ответ Множество значений
Применяем ограниченность синуса и косинуса -1≤sinx≤1 Преобразуем правую часть по формуле
ответ Множество значений
№2 Найти область определения функции у=1/(sinx-sin3x) Дробь имеет смысл тогда и только тогда, когда её знаменатель отличен от 0 Найдем при каких х знаменатель равен 0. Решаем уравнение sinx-sin3x=0 Применяем формулу
Так как синус - нечетная функция, то sin(-x)=-sinx
sinx=0 ⇒ x=πk, k∈Z cos2x=0 ⇒ 2x=(π/2)+πn, n∈Z ⇒ x=(π/4)+(π/2)n, n∈ Z ответ. Область определения: x≠πk, k∈Z x≠(π/4)+(π/2)n, n∈ Z
1) c² + b³ - cb + c - cb² - b² = (c² - cb + c) + (b³ - cb² - b²) =
= c(c - b + 1) + b²(b - c - 1) = c(c - b + 1) - b²( c - b + 1) = (c - b + 1)(c - b²)
2) (x + y - 7)² + (x - 2y + 2)² = 0
Это равенство верно только в случае, когда :
3) Пусть надо взять х кг 25% - го и y кг 50% - го сплавов меди . Надо получить 20 кг 40% - го сплава.
x y 20 = x + y
25% 50% 40%
0,25x + 0,5y = 0,4(x + y)
Если x + y = 20 , то y = 20 - x
0,25x + 0,5 * (20 - x) = 0,4 * 20
0,25x + 10 - 0,5x = 8
- 0,25x = - 2
x = 8 кг - 25% - го
y = 20 - 8 = 12 кг - 50% - го
ответ : надо взять 8 кг 25% - го и 12 кг 50% - го сплавов