Объяснение:
а) 17,18,19,23,27,31,37 в ряду 7 членов. Центральное место принадлежит медиане. Его находим так: Если число нечетное(как в нашем случае) то добавляем 1 и делим пополам. 7+1=8 8/2=4. Значит на 4 месте в ряду находится медиана. При этом проверить ,чтобы числа стоЯли строго по возрастанию! На 4 месте стоит 23! значит Ме=23.
б)
1,8 2,4 5,6 8,7 9,8 10,2
поиск медианы при четном числе членов делается иначе. Число членов +1 делят на 2.
7/2=3,5
поскольку место натуральное число,медиана находится между 3 и 4 местом. Среднее арифметическое двух мест.
5,6+8,7=14,3 14,3/2=7,15 Ме = 7,15
и не важно,что такого члена нет в этом ряду.Ровно половина над медианой и половина под ней.
x принадлежит (-бесконечности; 2-2*2^(1/2)] U {2} U [2+2*2^(1/2); + бесконечность)
Объяснение:
(x^2-4*x)^2 - 16 >=0
(x^2 - 4*x)^2 - 4^2 >=0
(x^2-4*x - 4)*(x^2 - 4*x + 4)>=0
(x^2 - 4*x - 4) * (x - 2) ^ 2 >= 0
найдем корни x^2 - 4*x - 4 = 0
D = 16 + 16 = 32
x = (4 - 4*2^(1/2))/2
x = (4 + 4*2^(1/2))/2
2^(1/2) - корень из двух
нули функции
+++ --- +
2 - 2*2^(1/2) 2(корень четной степени) 2 + 2*2^(1/2)
так как точка А(а;б) принадлежит графику функции у=х^3, то выполняется равенство а^3 = б
для того, чтобы проверить принадлежат ли графику другие точки надо подставить их координаты ф формулу функции и проверить равенство. Если он такое же как и для точки А, то точка принадлежит графику, если нет, то не принадлежит
В(-а;б) - (-а)^3 = б
-а^3 = б - ложно значит точка В не принадлежит
C (а;-б) - а^3 = - б - ложно - не приналежит
Д (-а;-б) - (-а)^3 = -б
- а^3 = -б
а^3 = б - верно - принадлежит