Так, еще вопрос.. в правильном тождестве (х2(х во второй степени)-1)*(х+=(х+3)*(х-1)*(х+ 2 числа заменили многоточиями. что это за числа? ответ нужно объяснить. нам говорили что-то про раскрытие скобок
Да , для простоты сделаем замену пусть эти числа равны a и b (x^2-1)(x+a)=(x+3)(x-1)(x+b) (x-1)(x+1)(x+a)=(x+3)(x-1)(x+b) (x+1)(x+a)=(x+3)(x+b) И теперь очевидно что a=3 b=1
Корень пятой степени равен -2 возведем обе части в степень 5. 2x-7=(-2)^5=-32 2x=-32+7=-25 x=12.5
выражение в знаменателе ≠0 5х-8≠0 х≠8/5 5х-8>0← под корнем число большее 0 →x>8/5
t+5=√(2t²+19t+43) t+5≥0 → t≥-5 возводим обе части в квадрат → t²+10t+25=2t²+19t+43→ t²+9t+18=0 корни по виетту t1=-3 t2=-6 этот корень меньше -5 и не годится. ответ -3
разность дробей в примере 4 находим используя формулу разности квадратов. (2х^0.5-3y^0.5-2x^0.5-3y^0.5)/(4x^1-9y^1)=-6y^0.5/(4x-3y) умножим -6y^0.5*(2x-9y/2)/(4x-9y)=-6y^0.5(4x-9y)/2(4x-9y)=-3y^0.5= =-3√y
1) Ищем границы интегрирования -х² + х + 6 = х + 2 -х² = -4 х² = 4 х = +- 2 Теперь ищем интеграл, под интегралом (-х² + х + 6)dx в пределах от -2 до 2, потом интеграл, под интегралом (х +2)dx в пределах от -2 до 2, делаем вычитание и получаем площадь фигуры. а) интеграл =( -х³/3 +х²/2 +6х)| в пределах от -2 до 2=56/3 б)интеграл = (х²/2 +2х)| в пределах от -2 до 2 = 8 S = 56/3 - 8 = 4 2) Ищем границы интегрирования 4х -х² = х -х² +3х =0 х =0 х = 3 Теперь ищем интеграл, под интегралом (4 х -х²) dx в пределах от 0 до 3 потом интеграл, под интегралом хdx в пределах от 0 до 3, делаем вычитание и получаем площадь фигуры. а) интеграл =(4 x²/2 -х³/3)| в пределах от 0 до 3=9 б)интеграл = (х²/2)| в пределах от 0 до 3 = 4.5 S = 9 - 4,5 = 4,5
(x^2-1)(x+a)=(x+3)(x-1)(x+b)
(x-1)(x+1)(x+a)=(x+3)(x-1)(x+b)
(x+1)(x+a)=(x+3)(x+b)
И теперь очевидно что
a=3
b=1