М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
никита4342
никита4342
02.12.2021 07:58 •  Алгебра

Найдите, при каких значениях параметра m трехчлен второй степени (3-4m)x^2+3(m-1)x-2(m-1) представляет полный квадрат двучлена.

👇
Ответ:
alenalis41125
alenalis41125
02.12.2021
Нам нужно разложить наш трехчлен на два множителя, которые на самом-то деле будут одинаковыми. Чтобы найти эти множители, нам необходимо решить квадратное уравнение (3-4m)x^2+3(m-1)x-2(m-1)=0 
Самое главное - не запутаться в буквах. x - переменная, а m - параметр.
Найдем дискриминант этого уравнения.
D=(3(m-1))^2-4*(3-4m)*(2(m-1))=
=3m^2-6m+3-4((3-4m)(2m-2))=
3m^2-6m+3-4(-8m^2+14m-6)=
3m^2-6m+3+32m^2-56m+24=35m^2-62m+27

Теперь думаем: при D0 будет два корня, которые не будут равны. При D<0 корней не будет вообще, а при D=0 - как раз то, что нужно! Ведь корень будет всего один (или, как говорят, корень второй кратности), а значит получится полный квадрат двучлена.

Решим другое уравнение: 35m^2-62m+27=0. Заметим, что сумма коэффициентов равна нулю, а значит число 1 является корнем этого уравнения. По теореме Виета, другой корень будет равен \frac{27}{35}.

Итак, вот он ответ: при m=1 и m=\frac{27}{35} наш трехчлен представляет собой полный квадрат.

Ради интереса можно сделать проверку, подставив вместо m единицу, и попробовать выделить полный квадрат.
4,7(53 оценок)
Открыть все ответы
Ответ:
arsen20171
arsen20171
02.12.2021

a)  x^{2}+x-42=0
Ищем дискриминант:
D=1^{2}-4*1*(-42)=1-4*(-42)=1-(-4*42)=1-(-168)=1+168=169;

Дискриминант больше 0, уравнение имеет 2 корня:
x_1=\frac{\sqrt{169}-1}{2\cdot 1}=(13-1)/2=12/2=6;
x_2= -\frac{\sqrt{169}-1}{2\cdot 1}=(13-1)/2=12/2=6 =(-13-1)/2=-14/2=-7.

 

 

б) -5x^{2}+23x+10=0

Ищем дискриминант:
D=23^{2} -4*(-5)*10=529-4*(-5)*10=529-(-4*5)*10=529-(-20)*10=529-(-20*10)=529-(-200)=529+200=729;

Дискриминант больше 0, уравнение имеет 2 корня:
x_1 = \frac{\sqrt{729}-23}{\cdot(2*(-5))} =(27-23)/(2*(-5))=4/(2*(-5))=4/(-2*5)=4/(-10)=-4/10=-0.4;


x_2 = -\frac{\sqrt{729} -23}{\cdot(2*(-5))} =-50/(2*(-5))=-50/(-2*5)=-50/(-10)=-(-50/10)=-(-5)=5.

 

 

 в) 7x^{2}+x+1=0


Ищем дискриминант:
D=1^{2}-4*7*1=1-4*7=1-28=-27; 

Дискриминант меньше 0, уравнение не имеет корней.

 

 

г) 16x^{2}+8x+1=0 
Ищем дискриминант:
D= 8^{2}-4*16*1=64-4*16=64-64=0; 

Дискриминант равен 0, уравнение имеет 1 корень:
X=\frac{-8}{2\cdot16}=\frac{-8}{32}  =-0.25

 

 

 

4,5(88 оценок)
Ответ:
mulz
mulz
02.12.2021

5sin²x + 3sinx × cosx - 4 = 0​

5sin²x + 3sinx × cosx - 4×1 = 0​

5sin²x + 3sinx × cosx - 4(sin²x + cos²x) = 0

5sin²x + 3sinx × cosx - 4sin²x - 4cos²x = 0

sin²x + 3sinx × cosx - 4cos²x = 0 | : cos²x

tg²x + 3tgx - 4 = 0

Пусть tgx = a, тогда:

a² + 3a - 4 = 0

D = 3² - 4×1×(-4) = 9 + 16 = 25

D>0, 2 корня

x₁ = -3+√25/2×1 = -3+5/2 = 2/2 = 1

x₂ = -3-√25/2×1 = -3-5/2 = -8/2 = -4

tgx = 1           или      tgx = - 4

x₁ = π/4 + πn, n∈Z     x₂ = arctg(-4) + πn, n∈Z

                                 x₂ = - arctg 4 + πn, n∈Z

ответ: x₁ = π/4 + πn, n∈Z

            x₂ = - arctg 4 + πn, n∈Z

4,8(72 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ