М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sakhnovavaleri1
sakhnovavaleri1
26.02.2020 15:36 •  Алгебра

Найдите значение функции у=6х-3 при х=4

👇
Ответ:
WERDF342
WERDF342
26.02.2020
У=24-3 
y=21
Так что ли ? 
4,5(81 оценок)
Ответ:
7515575
7515575
26.02.2020
у=6х-3 при х=4
y=6*4-3 
y=24x-3
y=21
вроде так
4,4(59 оценок)
Открыть все ответы
Ответ:
bosiy01
bosiy01
26.02.2020
Воспользуемся равенством

tg α – tg β = tg (α – β) (1 + tg α tg β).

Получаем:

tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.

С первым понятно, что делать. Второе:

tg 2x tg 4x = –2,

tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.

Это равенство невозможно.

Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
4,8(19 оценок)
Ответ:
kavabanga1337
kavabanga1337
26.02.2020
1) Пусть задача поставлена для функции y=ctg(2x)+sin(x).
ctg(2x) имеет множество значений (-inf;+inf). ctg(2x)+sin(x) тоже имеет множество значений (-inf;+inf). Поэтому прямая y=3-p имеет хотя бы одну общую точку с y=ctg(2x)+sin(x) при любых значениях p.
ответ: при любых значениях p.
2) Пусть задача поставлена для функции y=ctg²(x)+sin(x).
y=cos²(x)/sin²(x)+sin(x)=(1-sin²(x))/sin²(x)+sin(x)=1/sin²(x)+sin(x)-1
Требуется определить множество значений этой функции. Пусть sin(x) = t. Тогда y(x)=f(t)=1/t²+t-1. Наибольшее и наименьшее значения будем искать на отрезке t∈[-1;1], так как t=sin(x).
f'(t)=-2/t³+1=(t³-2)/t³.
Нули числителя: t=∛2
Нули знаменателя: t=0.
Расположим эти точки на числовой прямой.
f'>0             f'>0          f'<0          f'<0          f'>0
-1 0 1  ∛2 >
f   ↑                  ↑              ↓              ↓                ↑
На отрезке [-1;1] функция возрастает с -1 до 0-. Затем с 0+ до 1 убывает. Это значит, что наименьшее значение на отрезке [-1;1] достигается на одном из его концов. То есть min(f(-1),f(1))=min(1/(-1)²-1-1, 1/1²+1-1)=-1.
При стремлении t к 0- и к 0+ функция f(t) принимает сколь угодно большие значения. Поэтому множество значений функции f(t) и y(x) равно [-1;+inf).
y=3-p - горизонтальная прямая. Она имеет общую точку с графиком функции y(x)=1/sin²(x)+sin(x)-1, если пересекает множество значений y(x). Таким образом, 3-p>=-1, p<=4.
ответ: при p<=4.
4,7(28 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ