Таблица графика линейной функции состоит из двух строк, в одной из которых записываются значения х, а в другой - соответствующие значения у. Обычно для таблицы берутся 5 значений х: два положительных, два отрицательных и ноль.
Например, ты решил взять значения - 1, - 2, 0, 1 и 2 (чаще всего берут именно их). По оси абсцисс (горизонтальной оси ОХ) находишь одно из этих значений х и смотришь, где график функции пересекается с графиком функции у = х. На словах звучит страшно, на деле это достаточно просто. Впрочем, если дана сама функция, а не только график, то можно рассчитать значение у по формуле функции. Затем записываешь получившееся значение х в таблицу.
Y=4-x² 1. ОДЗ: x∈(-∞;+∞) 2. Чётность функции: 4-х²=4-(-х)²≡4-х², ⇒ функция чётная (симметричная относительно оси ОУ). 3. Критические точки: y`=(4-x²)`=-2x=0 у(0)=4-0²=4 ⇒ уmax=4, а (0;4) - точка перегиба. x=0 y`=0 ⇒ y`(0)=0 ⇒ имеем два интервала: -∞+0-+∞ Знак интервала определили простой подстановкой значений из интервала в уравнение у`=-2x y`>0 - функция убывает. y`<0 - функция возрастает. 4. Исследование на вогнутость и выпуклость: Точка перегиба х=0 у=4-х²=0 х₁ -2 х₂=2 -∞+-2+0-2-+∞ ⇒ x∈(-∞;0) - выпуклая. x∈(0;+∞) - вогнутая. Вывод: это парабола, опущенная вниз, вершина которой поднята относительно оси ОУ на 4 единицы.
Відповідь:фото
Пояснення: