Решение.
С помощью формулы Герона посчитаем площадь данного треугольника. Полупериметр равен
\rho= дробь, числитель — 11 плюс 12 плюс 7, знаменатель — 2 =15.
Тогда площадь равна
S= корень из { \rho(\rho минус 11)(\rho минус 12)(\rho минус 7)}= корень из { 15 умножить на 4 умножить на 3 умножить на 8}=12 корень из { 10}.
Далее найдем высоту через площадь и сторону треугольника. Наименьшая высота проведена к наибольшей стороне, поэтому
h= дробь, числитель — 2 умножить на S, знаменатель — 12 = дробь, числитель — 2 корень из { 10}, знаменатель — 7 .
Подставляя значение 3,16 вместо корень из { 10}, получаем:
h\approx 2 умножить на 3,16=6,32.
ответ: 6,32.
Объяснение:
Площа трикутника за найпоширенішою формулою рівна половині добутку основи на висоту, проведеної до неї. Виконуємо обчислення
S= 24*16/2=192 (кв. см.)
Для визначення периметру нам потрібно відшукати довжину бічної сторони.
У рівнобедреному трикутнику висота, проведена до основи в, є бісектрисою і медіаною.
За теоремою Піфагора знаходимо бічну сторону трикутника
b=sqrt(16^2+(24/2)^2)=20 (cм)
Периметр - сума всіх сторін
P= 2*20+24=64 (см)
Знаходимо радіус вписаного в трикутник кола за формулою
r=S/(2*P)=192/(64/2)=192/32=6 (см).