1) подставив вместо х=-2 и у=3, получаем (-2-1)^2+3^2=18 9+9=18 18=18 Да, является 2) Это окружность с центром (-1;2) и радиусом 4 3) a) у=3-x^2 - график парабола, ветви направлены вниз, график поднять вверх 3 еденицы y=x-3 - график прямая проходящая через точку (0;-3) и (3;0)
ответ: (-3;-6), (2;-1)
4) Методом подстановки 2y^2-y^2=14 3x+2y=5 Из уравнения 2 выразим переменную х x=(-2y+5)/3 2*((-2y+3)/3)²-y²-14=0 y²+40y+76=0 по т. ВИета y1=-38 y2=-2 x1=27 y2=3
Сумма n членов посл-ти в числителе: Sn=[(n+1)^2]*[n/2]-2n-4n+4-6n+12-8n+24+...-n^2+const+...-4n+4-2n= (1) =(n^3)/2+n^2+n/2-2n(1+2+3+4+...+n/2)+A(n^2) (2) <<<Пояснение: представили сумму посл-ти числ-ля как n/2 квадратов сумм пар крайних членов т.е. [(n+1)^2+(n-1+2)^2+(n-2+3)^2+...+([n-n/2]+n/2)^2] и прибавили разницу т.е. напр. для номера 3: (3^2+(n-2)^2)-(3+n-2)^2=-6n+12; для номера 2: -4n+4 и т.д. Таким образом получили (1) Далее (2): А(n^2)-величина порядка не более n^2, получаемая при сложении всех свободных членов из (1)>>> (n^3)/2+n^2+n/2-2n(1+2+3+4+...+n/2)+A(n^2)=(n^3)/2+n^2+n/2-2n([n/2+1]/2*(n/2))+A(n^2)=(n^3)/4+A(n^2)+A(n)+const Отсюда искомый предел: lim[(n^3)/4+A(n^2)+A(n)+const]/[n^3+3n^2+2] при n->& равен 1/4
52 ахвадпдажмдпдада от 20 символов