Объяснение: 4. (sin(β-π)×sin(2π-β)×cos(β-2π))/
/(sin(π/2 -β)×ctg(π-β)×ctg(β+ 3π/2)) =
=(sin(-(π-β))×sin(-β+2π)×cosβ)/(cosβ×(-ctgβ)×(-tgβ))=
=(-sinβ×(-sinβ)×cosβ)/(cosβ×ctgβ×tgβ)=(sin²β×cosβ)/(cosβ×1) =sin²β ;
5.
1+sinx×cosx×tgx = 1+ (sinx×cosx×sinx)/cosx= 1+ sin²x =1 + sin²(π/3)=
=1+(√3/2)² = 1+ 3/4 = (4+3)/4 = 7/4.
Здесь sin(π/3) = √3/2.
6. tgα=sinα/cosα , cosα=4/5,
Найдем sinα: sin²α= 1 - cos²α = 1 - (4/5)² = 1- (16/25) = (25-16)/25 =
= 9/25;
sinα = - √(9/25) = -3/5; sinα отрицательный потому что (3π/2)<α<2π ;
tgα= sinα/cosα = -(3/5)/(4/5) = -(3×5)/(5×4) = - 3/4.
Вертикальные асимптоты: x = 2
Горизонтальные асимптоты: y = 3
Нет наклонных асимптот
Объяснение:
Выясним, при каких значениях переменной функция 3 x + 1 x − 2 не определена. x = 2
Рассмотрим рациональную функцию
, где n - степень числителя, а m - степень знаменателя.
1. Если n < m , то ось x, y = 0 , является горизонтальной асимптотой.
2. Если n = m , то горизонтальной асимптотой является прямая
Если n > m , то не существует горизонтальной асимптоты (только наклонная асимптота).
Найдем n и m
n = 1 ; m = 1
Поскольку n = m , горизонтальная асимптота является прямой , где a = 3 и b = 1
y = 3
Наклонных асимптот нет, поскольку степень числителя меньше либо равна степени знаменателя.
Это множество всех асимптот.
Вертикальные асимптоты: x = 2
Горизонтальные асимптоты: y = 3
Нет наклонных асимптот
x=-8
Объяснение:
5x+10-4x+12=6-x
2x=-16
x=-8