М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Znanija027
Znanija027
01.11.2020 18:44 •  Алгебра

Задание во вложении с обьяснением">

👇
Ответ:
ZzitizZ
ZzitizZ
01.11.2020

Г)

Объяснение:

системи рівнянь

4,5(40 оценок)
Ответ:
Anastasiya21126
Anastasiya21126
01.11.2020

1) По теореме Пифагора :

x² + y² = 13²

2) По условию AC на 7 см больше, чем CB , значит, если из AC вычтем CB, то получим эту разницу равную 7 см, то есть :   y - x = 7

ответ : г)

4,7(1 оценок)
Открыть все ответы
Ответ:
А) на первом месте мы можем использовать 2 цифры, так как 0 на первом месте нельзя поставить, на втором - 3 цифры(с учетом цифры 0), на третьем месте - 3 способами. по правилу произведения  всего таких чисел 2*3*3 = 18. б) на первом месте можно взять 2 способами, на второе место - 2 способами, а на третье место - 1 способом. по правилу произведения, таких всего чисел - 2*2*1 = 4 в) на первые три места можно использовать любую цифры из 4. т.е. всего таких чисел будет 4³ = 64 г) на первое место можно выбрать 4 способами, на второе место - 3 способами, т.к. одну цифры мы уже используем, на третье месте - оставшиеся из 2. по правилу произведения:   4*3*2 = 24
4,4(58 оценок)
Ответ:
vladaua2005p06s4b
vladaua2005p06s4b
01.11.2020
Раскладываем на множители sin+sin3x+sin5x
sinx+sin3x+sin5x=sinx+sin(x+2x)+sin(3x+2x)=sinx+sinx*cos2x+cosx*sin2x+sin3x*cos2x+cos3x*sin2x=sinx+sinx*cos2x+2sinx*cos^2x+sin(2x+x)*cos2x+cos(x+2x)*sin2x=sinx+sinx*cos2x+2sinx*cos^2x+(2sinx*cos^2x+cos2x*sinx)*cos2x+(cosx*cos2x-sinx*sin2x)*2sinx*cosx=sinx(1+cos2x+2cos^2x+(2cos^2x+cos2x)*cos2x+2cosx*(cosx*cos2x-sinx*sin2x))=sinx(1+cos2x+2cos^2x+cos^2(2x)+2cos^2x*cos2x+2cos^2x*cos2x-4sin^2x*cos^2x)=sinx(1+cos2x+2cos^2x+cos^2(2x)+4cos^2x*cos2x-sin^2(2x))=sinx(2cos^2(2x)+cos2x+2cos^2x+4cos^2x*cos2x)=sinx(2cos^2(2x)+cos2x+1+cos2x+4cos^2x*cos2x)=sinx(2cos^2(2x)+2cos(2x)+2(1+cos2x)*cos2x+1)=sinx(2cos^2(2x)+2cos2x+2cos2x+2cos^2(2x)+1)=sinx(4cos^2(2x)+4cos(2x)+1)=sinx*(2cos(2x)+1)^2

теперь раскладываем cosx+cos3x+cos5x
cosx+cos3x+cos5x=cosx+cos(2x+x)+cos(2x+3x)=cosx+cos2x*cosx-sin2x*sinx+cos2x*cos3x-sin2x*sin3x=cosx+cos2x*cosx-2sin^2x*cosx+cos2x*cos(x+2x)-2sinx*cosx*sin(x+2x)=cosx+cos2x*cosx-2sin^2x*cosx+cos2x*(cosx*cos2x-2sin^2x*cosx)-2sinx*cosx*sin(x+2x)=cosx(1+cos2x-2sin^2x+cos^2(2x)-2sin^2x*cos2x-2sinx*(sinx*cos2x+cosx*sin2x))=cosx(2cos2x+cos^2(2x)-2sin^2x*cos2x-2sin^2x*cos2x-4sin^2x*cos^2x)=cosx(2cos2x+cos^2(2x)-4sin^2x*cos2x-4sin^2x*cos^2x)=cosx(2cos2x+cos^2(2x)-2(1-cos2x)*cos2x-sin^2(2x))=cosx(2cos2x+cos^2(2x)-sin^2(2x)-2cos2x+2cos^2(2x))=cosx(2cos^2(2x)-1+2cos2x-2cos2x+2cos^2(2x))=cosx(4cos^2(2x)-1)=cosx(2cos2x-1)(2cos2x+1)
подставляем в уравнение:
\frac{sinx*(2cos(2x)+1)^2}{cosx*(2cos2x-1)(2cos2x+1)}+2tgx=0
\\tgx* \frac{(2cos(2x)+1)^2}{(2cos2x-1)(2cos2x+1)} +2tgx=0
\\tgx(\frac{(2cos(2x)+1)^2}{(2cos2x-1)(2cos2x+1)} +2)=0
\\tgx=0
\\x_1=\pi n
\\\frac{(2cos2x+1)^2}{(2cos2x-1)(2cos2x+1)} +2=0
\\ \frac{2cos2x+1}{2cos2x-1} +2=0
\\ \frac{2cos2x+1+4cos2x-2}{2cos2x+1} =0
\\2cos2x+1 \neq 0
\\cos2x \neq -\frac{1}{2} 
\\2cos2x+1+4cos2x-2=0
\\6cos2x=1
\\cos2x= \frac{1}{6} 
\\2x=arccos( \frac{1}{6} )+2\pi n
\\x_2=0,5*arccos(\frac{1}{6})+\pi n
2x=-arccos( \frac{1}{6} )+2\pi n
\\x_3=-0,5*arccos(\frac{1}{6})+\pi n
ответ: x_1=\pi n;\ x_2=0,5*arccos(\frac{1}{6})+\pi n;\ x_3=-0,5*arccos(\frac{1}{6})+\pi n
4,4(4 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ