a) Выражение имеет смысл когда подкоренное выражение неотрицательно. Тогда
-x ≥ 0 ⇔ x ≤ 0 ⇔ x∈(-∞; 0].
b) В силу пункта а) область определения функции : D(y)=(-∞; 0].
Значение квадратного корня неотрицательно, поэтому множество значений функции : E(y)=[0; +∞).
Чтобы построить график функции определим несколько значений функции:
График функции в приложенном рисунке 1.
c) Чтобы показать на графике значения х при у=2 и y=2,5 сначала определим эти значения. Для этого решаем уравнения:
Получили целое число.
Приближенные значение х=–6,25≈–6.
-27 a^3 c - 6 a^2 x - 2 a b - 30 a + x^3 - 3 x^2 + 25
Объяснение:
Всё легко и просто, вот пошаговая инструкция:
x = -(2^(1/3) (-18 a^2 - 9))/(3 (729 a^3 c + 162 a^2 + sqrt(4 (-18 a^2 - 9)^3 + (729 a^3 c + 162 a^2 + 54 a b + 810 a - 621)^2) + 54 a b + 810 a - 621)^(1/3)) + (729 a^3 c + 162 a^2 + sqrt(4 (-18 a^2 - 9)^3 + (729 a^3 c + 162 a^2 + 54 a b + 810 a - 621)^2) + 54 a b + 810 a - 621)^(1/3)/(3 2^(1/3)) + 1
Или же можешь взять это:
d/dx(x^3 - 3 x^2 - x (6 a^2) - 2 a b - (3 a c) (9 a^2) - 30 a + 25) = 3 (x - 2) x - 6 a^2