М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ElenaDzaraxova
ElenaDzaraxova
17.08.2021 00:36 •  Алгебра

Какое наибольшее количество чисел можно выбрать среди натуральных чисел, не превосходящих 100, так, чтобы ни сумма, ни произведение никаких двух различных выбранных чисел не делились на 100?

👇
Ответ:
Нютикккк
Нютикккк
17.08.2021

90 чисел.

Объяснение:

Нам подходят все натуральные числа ≤ 100.

Рассмотрим сумму двух чисел.

Заметим, что 0 нацело делится на 100.

Любая сумма чисел этого числа будет ≤18, но при этом сумма чисел этого числа всегда будет больше нуля. Поскольку 0 не является натуральным числом в математике.

Теперь рассмотрим произведение двух чисел этого числа.

a \times b = 100

где:

a принимает значения — 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

b принимает значения — 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Заметим, что a ≠ 0, поскольку число не может начинаться с нуля.

Рассмотрим, если b = 0, то таких чисел:

10 \times 1 = 10

То есть, вот эти числа: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.

Всего, подходящих нам чисел: 100 - 10 = 90 чисел.

4,8(31 оценок)
Открыть все ответы
Ответ:

(-бесконечности ; -10] и (7; +бесконечности)

Объяснение:

Запишем все под одной дробью:

\frac{2x + 3 - 1(x - 7)}{x - 7} \geqslant 0

Найдём область допустимых значений:

х-7≠0, то есть х ≠ 7

Раскроем скобки и решим:

\frac{2x+ 3 - x + 7}{x - 7} \geqslant 0

\frac{x + 10}{x - 7} \geqslant 0

Рассмотрим все возможные случаи (знаменатель строго больше нуля, так как если он будет равен нулю, выражение потеряет смысл):

1. Когда и знаменатель, и числитель больше 0

x + 10 \geqslant 0 \\ x - 7 0

2. Когда оба меньше 0

x + 10 \leqslant 0 \\ x - 7 < 0

1.

x \geqslant - 10 \\ x 7

То есть х принадлежит ( 7; +бесконечности)

Так как 7 не удовлетворяет ОДЗ, то скобки круглые

2.

x \leqslant - 10 \\ x < 7

То есть х принадлежит (- бесконечности ; - 10]

Найдём объединение:

Х принадлежит (-бесконечности ; -10] и (7; +бесконечности)

4,7(77 оценок)
Ответ:
игорь800
игорь800
17.08.2021

Задание № 1:

Найдите последнюю ненулевую цифру значения произведения 40^50*50^40?

40^{50}*50^{40}=4^{50}*10^{50}*5^{40}*10^{40}=&#10;(2^2)^{50}*5^{40}*10^{50}*10^{40}= \\ =2^{100}*5^{40}*10^{90}&#10;=2^{60}*2^{40}*5^{40}*10^{90} = \\ =2^{60}*10^{40}*10^{90}=2^{60}*10^{130}

10^130 нас не интересует. Попробуем повозводить 2 в степень:

2^1=2, 2^2=4, 2^3=8, 2^4=16, 2^5=32

Пятая степень, как и первая, оканчивается на 2. Образуется своего рода цикл.

Чтобы узнать последнюю цифру степени N, нужно N разделить на 4. Остаток от деления соответствует степени, последняя цифра которой совпадает с последней цифрой степени N. Остаток 0 соответствует 4-ой степени.

60/4=15, остаток 0 – 4 степень оканчивается на 6, значит и 60 степень оканчивается на 6

ОТВЕТ: 6

4,4(40 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ