С одной стороны, сумма всех вычеркнутых чисел не меньше 1 + 2 + 3 + ... + 3n = 3n (3n + 1)/2; с другой стороны, сумма вычеркнутых чисел не больше 39 + 38 + 37 + ... + (40 - n) = n (79 - n) / 2. Поэтому n (79 - n) / 2 ≥ 3n (3n + 1)/2; 79 - n ≥ 9n + 3; n ≤ 7.
Раскроем выражение под знаком модуля, тогда для случая sin>=0 имеем sinx-cosx=cos(90-x)-cos(x)=-2*sin(0,5*(90-2*x))*cos(45)=-2*cos(45)*sin(0,5*(90-2*x)). Так как cos45 - это число, то имеем число, умноженное на sin(0,5*(90-2*x)), то есть периодическую функцию с периодом 360 градусов. Теперь для sin[<0 имеем -sinx-cosx=-cos(90-x)-cos(x)=-cos(90-x)-cos(x)=-(cos(90-x)+cos(x))=-(2*cos(45)*cos(0,5*(90-2*x))), также периодическая функция с периодом 360 градусов. Таким образом, итоговая функция также периодическая с периодом 360 градусов или 2*π.
в) Предположим, нам удалось вычеркнуть n сумм.
С одной стороны, сумма всех вычеркнутых чисел не меньше 1 + 2 + 3 + ... + 3n = 3n (3n + 1)/2; с другой стороны, сумма вычеркнутых чисел не больше 39 + 38 + 37 + ... + (40 - n) = n (79 - n) / 2. Поэтому n (79 - n) / 2 ≥ 3n (3n + 1)/2; 79 - n ≥ 9n + 3; n ≤ 7.
Покажем, что n = 7 возможно:
1 + 15 + 23 = 39
2 + 14 + 22 = 38
3 + 13 + 21 = 37
4 + 12 + 20 = 36
5 + 11 + 19 = 35
6 + 10 + 18 = 34
7 + 9 + 17 = 33
а) Например, первые 6 примеров выше
б) Нет, по доказанному
ответ. б) нет; в) 7