Алгебра контрольная 7 класс итоговая задача 1 вариант ддано уравнение 2х+у=3 подберите к нему уравнение так чтобы вместе с данным уравнением образовалась система которая имеет множиство решений
Арифметическая прогрессия задается параметрами: - начальный элемент a₁ - разность прогрессии d
И тогда n-й элемент равен a₁+(n-1)d
Дано: а₃ = 7: a₉ = -18 Найти: a₁, a₆
В арифметической прогрессии для любых n и m одной четности элемент с индексом, равным среднему арифметическому n и m ((n+m)/2) равен среднему арифметическому элементов с индексами n и m.
6 = (3+9)/2, значит, a₆ есть среднее арифметическое элементов a₃ и a₉.
a₆ = (a₃+a₉)/2 = (7+(-18))/2 = -11/2
Разность между элементами a₃ и a₉ равна: a₃-a₉ = (a₁+(3-1)d)-(a₁+(9-1)d) = a₁+2d-a₁-8d = -6d. Отсюда d = (a₃-a₉)/(-6) = (7-(-18))/(-6) = -25/6
№ 1.
Если перед скобками стоит знак минус, то знаки в скобках меняются на противоположные.
1) 5(a - b + c) = 5a - 5b + 5c
5(а - b + c) = 5a - 5b + 5c - тождественно равные выражения;
2) -2(х - 4) = -2х + 8
-2(х - 4) ≠ -2х - 8 - не являются тождественно равными выражениями;
3) (5а - 4) - (2а - 7) = 5а - 4 - 2а + 7 = (5а - 2а) + (7 - 4) = 3а + 3
(5а - 4) - (2а - 7) ≠ 3а - 11 - не являются тождественно равными выражениями.
№ 2.
-12а + (7 - 2а) = -12а + 7 - 2а = (-12а - 2а) + 7 = -14а + 7.
№ 3.
Пусть х - первоначальная цена товара (100%), тогда
х + 0,2х = 1,2х - цена товара после увеличения на 20%
1,2х - 0,2 · 1,2х = 1,2х - 0,24х = 0,96х - цена после снижения на 20%
х - 0,96х = 0,04х - на столь снизилась цена по сравнению с первоначальной
0,04 · 100 = 4% - на столько процентов снизилась начальная цена
ответ: снизилась на 4%.