М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Petersen
Petersen
07.08.2021 14:53 •  Алгебра

Площадь основания треугольной пирамиды составляет 6 см², а площади боковых стенок - 9 см, 12 см и 15 см. Вычислите пирамиду: а) площадь боковой поверхности; (б) общая площадь поверхности.

👇
Открыть все ответы
Ответ:
Katya1065
Katya1065
07.08.2021
А) Раскрываем скобки и решаем. 4+4x<=x-2 3x<=-6 x<=-2. б) Перенесем правую часть в левую и получим (2x-1-10x-1)/5-3x>0 (-8x-2)/5-3x>0 Домножим на 5. -8x-2-15x>0 -2>23x -2/23>x. в)Две дроби поставим под общий знаменатель. Для этого можно сделать перекрестие или же просто домножить вторую дробь на два. (X^2-5)/6 +(2(x+1))/2*3>=2 (x^2-5+2x+1)/6>=2 (x^2+2x-3)/6>=2 Домножаем на 6. x^2+2x-3>=12 x^2+2x-15>=0 Получаем и решаем квадратное уравнение и получаем корни. x1=-5 и x2=3. Отложим эти две точки на оси X. Получаем три промежутка. x<=-5,x>=5 x<=3 и x>=3. Берем любые числа из каждого промежутка и подставляем в квадратное уравнение. Если число удовлетворяет условию, значит промежуток найден, если нет, значит ищем дальше. Тут же ответ x<=-5 x>=3. -5<=x<=3 не подходит, так как если ты подставишь в число в уравнение, неравенство окажется неверным.
4,6(67 оценок)
Ответ:
spaceman666
spaceman666
07.08.2021
Здесь опять есть нюанс, связанный с тем, что же все-таки мы считаем числителем и знаменателем новой дроби. Если мы новой дробью считаем дробь с числителем 2а+b и знаменателем a(a+b), то такая дробь несократима.

Предположим, противоположное, что 1/a+1/(a+b)=(2а+b)/(a(a+b)) сократима, т.е. 2а+b и a(a+b) делятся на некоторое простое число q.  Т.к. q - простое и произведение а(a+b) на него делится, то либо а, либо a+b делится на q.
1) Пусть a делится на q. В силу равенства b=(2a+b)-2a, получаем, что b тоже делится на q, а значит дробь a/b - сократима. Противоречие.
2) Если а+b делится на q, то в силу равенств
а=(2a+b)-(a+b) и b=2(a+b)-(2a+b), получаем, что а и b тоже делятся на q и дробь а/b сократима. Противоречие. Таким образом, дробь (2а+b)/(a(a+b)) несократима.
4,5(21 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ