М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Anna200689898098654
Anna200689898098654
23.12.2021 04:59 •  Алгебра

Уквжіть точку,що не належить графіку рівняння х+у=6

👇
Открыть все ответы
Ответ:
hfyvjfarioS
hfyvjfarioS
23.12.2021

1) x² + 6x – a > 0

y = x² + 6x – a -- парабола, ветви направлены вверх (коэффициент при x² положительный). Условие x² + 6x – a > 0 означает, что парабола не пересекает ось OX, то есть уравнение y = x² + 6x – a не имеет действительных корней, что соответствует отрицательному значению дискриминанта.

D = 6² + 4a = 36 + 4a < 0

a < –9

ответ: неравенство x² + 6x – a > 0 выполняется для всех x при a < –9.

2) –x² – 7x + 2 – a < 0

y = –x² – 7x + 2 – a -- парабола, ветви направлены вниз (коэффициент при x² отрицательный). Условие –x² – 7x + 2 – a < 0 означает, что парабола не пересекает ось OX, то есть уравнение y = –x² – 7x + 2 – a не имеет действительных корней, что соответствует отрицательному значению дискриминанта.

D = (–7)² + 4(2 – a) = 57 – 4a < 0

a > 57/4

ответ: неравенство –x² – 7x + 2 – a < 0 выполняется для всех x при a > 57/4.

3) (a – 1)x² + ax + a + 2 ≤ 0

Чтобы (a – 1)x² + ax + a + 2 ≤ 0 могло выполняться при всех x, уравнение y = (a – 1)x² + ax + a + 2 должно задавать параболу, причем ее ветви должны быть направлены вниз, т.е. a – 1 < 0 ⇔ a < 1 (запомним это). Кроме того, парабола не должна пересекать ось OX, но может касаться ее, что соответствует отрицательному или нулевому значению дискриминанта.

D = a² – 4(a – 1)(a + 2) = –3a² – 4a + 8 ≤ 0

Решим квадратное уравнение –3a² – 4a + 8 = 0

D₁ = (–4)² + 4·3·8 = 112

a₁ = (4 – √112) / (–6) = (–2 + 2√7) / 3

a₂ = (4 + √112) / (–6) = (–2 – 2√7) / 3

Уравнение y = –3x² – 4x + 8 -- парабола, ветви направлены вниз, поэтому неравенство –3a² – 4a + 8 ≤ 0 верно при a ≤ (–2 – 2√7) / 3 или a ≥ (–2 + 2√7) / 3.

Совмещая это с ограничением a < 1, полученным в начале решения, имеем: a ≤ (–2 – 2√7) / 3.

ответ: неравенство (a – 1)x² + ax + a + 2 ≤ 0 выполняется для всех x при a ≤ (–2 – 2√7) / 3.

4,7(78 оценок)
Ответ:
Gagatyngerz
Gagatyngerz
23.12.2021

Если угловой коэффициент к положителен, линейная функция возрастает. если отрицателен, то убывает. в 1) к=2>0 ; во 2) k=4>0, значит, обе функции возрастают.

второй Используя свойства верных числовых неравенств, докажем, что возрастают функции

1) у = 9 + 2 х

Пусть х₁>х₂, у₁ = 9 + 2 х₁; у₂ = 9 + 2 х₂; тогда 2х₁>2х₂, т.к. умножали на положительное одно и то же число 2, 9+2х₁>9+2х₂, т.к. к обеим частям добавили одно  и то же число 9, вывод у₁>у₂, доказано.

2) у = - 8 + 4х

аналогично

Пусть х₁>х₂,  у₁ = -8+4х₁; у₂ = -8+4х₂; тогда 4х₁>4х₂, т.к. умножали на положительное одно и то же число 4;  -8+4х₁>-8+4х₂, т.к. к обеим частям добавили одно  и то же число -8, вывод у₁>у₂, доказано.

4,4(98 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ