Пусть t ч - время автобуса при старом расписании, тогда его средняя скорость составляла 325/t км/ч. 40 мин = 2/3 ч По новому расписанию время автобуса составляет (t- 2/3) ч, а средняя скорость равна 325/(t- 2/3) км/ч. По условию задачи, скорость движения по новому расписанию на 10 км/ч больше скорости автобуса по старому расписанию. Составим уравнение: 325/(t- 2/3) - 325/t =10 325/((3t-2)/3) -325/t =10 975/(3t-2) - 325/t = 10 |*t(3t-2) 975t - 975t + 650 = 10t(3t-2) 30t²-20t-650=0 3t²-2t-65=0 D=(-2)²-4*3*(-65)=784=28² t₁=(2+28)/6=5 t₂=(2-28)/6=-4.1/3<0 (лишний корень) t=5 ч - время автобуса по старому расписанию 325/5= 65 км/ч - скорость автобуса согласно старому расписанию 65+10=75 км/ч - скорость автобуса согласно новому расписанию ответ: 75 км/ч
Не люблю проценты. Избавляемся от них. Собираемся взять 100x 1-го сплава, 100y второго, 100z третьего. Ясно, что y>0 - иначе не получить 20% меди. 1 сплав: 60x; 15x; 25x это я указываю количество каждого вещества. 2 сплав: 0y; 30y; 70y 3 сплав: 45z; 0z; 55z
Общий сплав: 100(x+y+z), меди в нем 15x+30y; по условию медь составляет 20%, то есть одну пятую часть сплава:
15x+30y=20(x+y+z); 3x+6y=4x+4y+4z; x=2y-4z.
Поскольку y>0, можно считать, что y=1; x=2-4z.
Естественные ограничения дают такие условия:
x∈[0;2]; z∈[0;1/2]
Нас спрашивают про содержание алюминия, то есть про возможные значения