I. Определяем тип уравнения: - если a^2 - 1 = 0: зависимости от x вообще не остаётся - если a^2 - 1 ≠ 0: обычное линейное уравнение. II. Решаем в каждом случае. - a^2 = 1: - a = 1: 0x = 0 x - любое - a = -1: 0x = -2 решений нет - a^2 ≠ 1: x = (a - 1)/(a^2 - 1) = 1/(a + 1)
ответ. Если a = 1, х - любое; если a = -1, решений нет; иначе x = 1/(a + 1).
Как правило, для "почти всех" значений параметра в подобных задачах уравнение выглядит просто. Однако могут быть частные случаи (например, обнуляется коэффициент при старшей степени икса, как здесь), о которых лучше не забывать.
ответ: х ∈ (3;+∞)
Пошаговое объяснение:
Область определения - решение системы неравенств
х+4>0 ⇒ x>-4
3x-9>0 ⇒x >9/3,
x>3