Для начала представим число 129 в виде простых множителей: 129 = 43 × 3
Пусть искомое число состоит из цифр a, b, c, т.е. число такое 100a + 10b + c. Тогда сумма цифр этого числа равна (a + b + c). Когда мы повторяем число 12 раз, то и сумма его цифр увеличится в 12 раз, т.е. 12 × (a + b + c). Сумма цифр делится на 3! Значит, какое бы мы трёхзначное число не взяли, повторив его 12, уже будет делиться на 3.
Пусть x = 100a + 10b + c искомое число, которое делится на 43, но не делится на 3. Когда мы число x повторим 12 раз получим такое число:
Если число x будет делиться на 43, то и вся наша длинная конструкция будет делиться 43, ну а на 3 она делится из-за повторения 12 раз, что было доказано выше. В общем, надо подобрать наибольшее трёхзначное число, которое будет делиться на 43, но де будет делиться на 3, а значит не будет делиться и на 129. Но после 12-кратного повторения этого числа, поученное 36 значное число будет делиться на 129.
Подбираем: 1000 : 43 = 23 и 11 в остатке. 43 × 23 = 989. Проверим, делится ли оно на 3? Сумма цифр 9 + 8 + 9 = 26, следовательно, число 989 не делится на 3.
Для начала представим число 129 в виде простых множителей: 129 = 43 × 3
Пусть искомое число состоит из цифр a, b, c, т.е. число такое 100a + 10b + c. Тогда сумма цифр этого числа равна (a + b + c). Когда мы повторяем число 12 раз, то и сумма его цифр увеличится в 12 раз, т.е. 12 × (a + b + c). Сумма цифр делится на 3! Значит, какое бы мы трёхзначное число не взяли, повторив его 12, уже будет делиться на 3.
Пусть x = 100a + 10b + c искомое число, которое делится на 43, но не делится на 3. Когда мы число x повторим 12 раз получим такое число:
Если число x будет делиться на 43, то и вся наша длинная конструкция будет делиться 43, ну а на 3 она делится из-за повторения 12 раз, что было доказано выше. В общем, надо подобрать наибольшее трёхзначное число, которое будет делиться на 43, но де будет делиться на 3, а значит не будет делиться и на 129. Но после 12-кратного повторения этого числа, поученное 36 значное число будет делиться на 129.
Подбираем: 1000 : 43 = 23 и 11 в остатке. 43 × 23 = 989. Проверим, делится ли оно на 3? Сумма цифр 9 + 8 + 9 = 26, следовательно, число 989 не делится на 3.
-ax-bx-cx= -х(а+в+с)
(m+1)-m(m+1)= (1-m)(1+m) = 1- m^2
2(a-b)+c(b-a)= (2-с)(а-в)
4(m+n)+(m+n)= (4+1)(m+n) = 5(m+n)
2a(b-3)-5c(3-b)= (2а+5с)(в-3)
Ура!)