Начнем со второй системы. Она решается устно. Первое уравнение пропорционально второму с коэффициентом пропорциональности, равным 2. 24*2 = 24*х, откуда х = 2. Тогда у1 = 2, у2 = -2. ответ: (2; 2), (2; -2).
В третьей достаточно сложить оба уравнения. получим: х^2 = 1, откуда х1 = 1, тогда у1 = 5, и х2 = -1, тогда у2 = 5. ответ: (1; 5), (-1; 5)
В первой системе приравняем первое значение у ко второму, получим: 5x^2 - 9x = 5x - 9, откуда х1 = 6, тогда у1 = 21, и х2 = - 2/5, тогда у2 = -11. ответ: (6; 21), (- 2/5; - 11)
5y^2 + 13y - 6 = 6y^2 + 7y + 2
5y^2 - 6y^2 + 13y - 7y - 6 - 2 = 0
- y^2 + 6y - 8 = 0
y^2 - 6y + 8 = 0
D = b^2 - 4ac= 36 - 32 = 4 = 2^2
y1 = ( 6 + 2)/ 2 = 4
y2 = ( 6 - 2) / 2 = 2
Проверяем подходят ли оба корня:
y =4 y = 2
(20 - 2)/(8 +1 )=( 12 + 2)/ 7 (10 - 2)/(4 + 1) = (6 + 2)/5
18/9 = 14/7 8/ 5 = 8/5 - верно.
2 = 2 - верно.
Находим среднее арифметическое корней:
(4 + 2) / 2 = 3