Построим график функцииy=|x+2|+|x-2|y=∣x+2∣+∣x−2∣
Для начала упростим функцию
Найдем знаки под модульного выражения
\begin{gathered} \left[\begin{array}{ccc}x+2=0\\ x-2=0\end{array}\right\Rightarrow \left[\begin{array}{ccc}x_1=-2\\ x_2=2\end{array}\right\end{gathered}
_-__-__(-2)__+__-__(2)__+__+__
\begin{gathered}y=|x+2|+|x-2|= \left[\begin{array}{ccc} \left \{ {{x \leq -2} \atop {-x-2-x+2}} \right. \\ \left \{ {{-2\ \textless \ x \leq 2} \atop {x+2-x+2}} \right. \\ \left \{ {{x\ \textgreater \ 2} \atop {x+2+x-2}} \right. \end{array}\right= \left[\begin{array}{ccc} \left \{ {{x \leq -2} \atop {-2x}} \right. \\ \left \{ {{-2\ \textless \ x \leq 2} \atop {4}} \right. \\ \left \{ {{x\ \textgreater \ 2} \atop {2x}} \right. \end{array}\right\end{gathered}
Наименьшее положительное значение параметра а найдем с параллельности прямых
График функции y=|x+2|+|x-2|y=∣x+2∣+∣x−2∣параллельный прямой y-ax+a-3=0y−ax+a−3=0 если угловые коэффициенты будут совпадать, т.е. k=\pm2k=±2
Но нам важен положительный параметр, значит a=2a=2 - минимальный.
Исследуем когда график будет касаться в точке (2;4) и (-2;4)
Подставив значения х=2 и у=4, получим
\begin{gathered}4-2a+a-3=0\\ 1-a=0\\ a=1\end{gathered}4−2a+a−3=01−a=0a=1
При а=1 система уравнений имеет одно решение
Если подставить x=-2x=−2 и y=4y=4 , получим
\begin{gathered}4+2a+a-3=0\\ 3a=-1\\ a=- \frac{1}{3} \end{gathered}4+2a+a−3=03a=−1a=−31
Наименьший параметр а=1.
Найдём из a=4k+3, все числа при делении на 3 которых получаем остаток 2.
По отношению к делимости на 3 всё множество чисел k можно разбить на три класса: числа вида 3n, 3n+1 ,3n+2. Других целых k нет.
Если k=3n, то 4*(3n)+3=(12n+3)+0 - остаток 0 при делении на 3
Если k=3n+1, то 4*(3n+1)+3=(12n+3)+1 - остаток 1 при делении на 3.
Если k=3n+2, то 4*(3n+2)+3=(12n+9)+2 - остаток 2 при делении на 3.
Получаем 12n+11=(12n+10)+1.
(12n+10)+1 при делении на 2 всегда получаем остаток 1.
ответ: 12n+11, n∈Z