Примем Х-время работы первого трактора
Примем Y-время работы второго трактора
Тогда:
X+Y=2
Y-3=X
Два трактора,работая вместе,вспахали поле за 2 дня. За сколько дней может вспахать всё поле каждый трактор,работая отдельно,если один из них может сделать это на 3 дня быстрее чем другой?
(1) X=Y-3
(2) X+Y=2
Подставляем выражение (1) в (2)
Y-3+Y=2
Y+Y=2+3
2*Y=5
Y=5/2=2.5 - надо дней для работы второго трактора
Подставляем Y в (1)
X=Y-3=2,5-3=-0,5 - надо дней для работы первого трактора
Но т.к. время не может быть величиной отрицательной, то делаем вывод что задание задано НЕ правильно (или получается, что один трактор пашет, а заодно и таскает на тросу второй трактор - он для пашущего трактора баласт)
Подробнее - на -
Объяснение:
x^3+bx^2+сx+d=0
c целыми коэффициентами рациональными корнями могут быть только числа являющиеся делителями свободного члена d
Проверяем для первого уравнения свободный член -6 - его делители +-1 +-2 +-3 +-6
подставляем эти x в уравнение
1 2 3 - являются корнями
x^3-6x^2+11x-6=(x-1)(x-2)(x-3)=0
Первый ответ:
x=1 x=2 x=3
Для второго уравнения свободный член -12 - его делители +-1 +-2 +-3 +-4 +-6 +-12
подставляем эти x в уравнение
-4 -3 1 - являются корнями
x^3+6x^2+5x-12=(x+4)(x+3)(x-1)=0
Второй ответ
x= -4 x= -3 x=1