 
                                                 
                                                 Пусть I – точка пересечения биссектрис треугольника АВС, а медиана СО пересекает проведенные биссектрисы в точках K и L (см. рис.). Так как 
∠AIB = 90° + ½ ∠C > 90°,  то в полученном треугольнике KLI угол при вершине I равен 45°. Значит,  ∠AIB = 135°,  поэтому  ∠AСB = 90°.  Следовательно,  ОС = ОА = OB.
Без ограничения общности можно считать, что прямым в треугольнике KLI является угол K. Тогда в треугольнике ВОС высота ВK совпадает с биссектрисой, поэтому ОВ = ВС. Таким образом, треугольник ВОС – равносторонний. Следовательно, ∠ABС = 60°, значит, ∠ВAС = 30°.
90°, 60° и 30°.
 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                
ответ: 13/16.
Объяснение:
3/4*13/12???
3/4*(13/12) = 3*13/4*12=39/48=13/16.