Скорость лодка против течения реки 5 км/ч собственная скорость лодки 7 км/ч за какое время эта лодка преодолеет а)35 км против течения реки б)45 км по течению реки
1) Сначала выдели из квадратного трёхчлена, приведённого в скобках полный квадрат.Это делается так. Для выделения квадрата меня смущают знаки - в квадратном трёхчлене. Вынесу за-6 скобки из трёхчлена знак -:-6(119+22x+x²) Теперь можно выделить полный квадрат из части в скобках.Последовательно получаю:-6((x² + 2 * 11x + 121)-121+119) = -6((x+11)²-2)2) С этой частью я как бы покончил. Теперь надо исследовать полученное выражение.рассуждаем при этом так:видим квадрат выражения. Известно, что квадрат любого числа не может быть отрицательным. следовательно, (x+11)² ≥0Оценим значение всего выражения в скобках. Из готового выражения следует, что к обеим частям неравенства следует прибавить -2:(x+11)² - 2≥-2(при этом знак неравенства не меняем!!).Ну и в конце домножим неравенство на -6, знак неравенства при этом меняется:-6((x+11)²-2) ≤ 12Из этого неравенства вижу, что наибольшее значение данного выражения это 12.Значит, это значение является наибольшим и для функции. Вообще же. данную задачу можно решить и графическим методом. Надо начертить график данной функции и поглядеть по графику, где функцию по оси y принимает наибольшее значение.
Если А и В лежат по одну сторону от прямой, то расстояние от середины отрезка до прямой равно полусумме расстояний от концов отрезка до этой прямой. Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3. Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π. Это в том случае, если косинус х.( без скобок).
7-5=2 (км/ч) - скорость течения реки
7+2=9 (км/ч) - скорость лодки по течению
35/7=5 (ч.)-по течению