 
                                                 
                                                log1/22(22x-2)≥0
22x-2≥1 22x-2>0
22x≥3 x>2/22
x≥3/22 x>1/11
x∈(1/11;3/22]
log1/2(5x-8)>1
5x-8>1/2 5x-8>0
5x>8.5 x>8/5
x>1.7 x>1.6
x∈(1.6;1.7)
log24x+log24(x-23)<1 x>0
log24x(x-23)<1 x-23>0
x²-23x<24 x>23
x²-23x-24<0
D=529+96=625
x₁,₂=23±25/2=24;-1
x∈(-1;23)
 
                                                Всё решается очень просто. Самое главное правильно сгруппировать слагаемые: 
sinx+sin2x+sin3x=0 
(sinx+sin3x)+sin2x=0 
То выражение, что получилось в скобках раскладывается на множители по известной формуле: 
sin a+sin b=2*sin (a+b)/2*cos(a-b)/2, поэтому (так как преобразования простые, то некоторые действия пропускаю) 
2*sin2х*cosх+sin2x=0 
sin2x(2cosx+1)=0 
Осталось решить два простых тригонометрических уравнения: 
sin2x=0 и cosx=-1/2 
Первое уравнение решается просто: х=pi*n/2 
Второе уравнение решается по формуле тригонометрии: 
cosx=a, x=(+-)arccosa+2*pi*n 
pi-это знаменитое число 3,14159 
n-любое целое число 
Вот и всё решение. 
 
                                                 
                                                 
                                                 
                                                 
                                                
ответ: A) i D) .
Объяснение:
y = 4 - (1/2)ˣ ; E(y) = ( - ∞ ; 4 ) , тому А) 3,2 і D) 3,6 Є Е( y ) .