ответ:
получи подарки и
стикеры в вк
нажми, чтобы узнать больше
августа 14: 23
найти все значения а при которых сумма квадратов корней уравнения х^2+(2-а)х-а-3=0 будет наименьшей
ответ или решение1
архипова вера
рассмотрим корни уравнения: х^2 + (2 - а) * х - (а-3) = 0, и применим теорему bиета:
х1 + х2 = -(2 - а); х1 * х2 = - а - 3.(1)
найдём искомые (х1² + х2²) = (х1 + х2)² - 2 * х1 * х2.
все эти величины определены в (1). подставим значения.
х1² + х2² = [-(2 - а)]² - 2 * (- а - 3) = (2 - а)² + 2 * а + 6 = 4 - 4 * а + а² + 2 * а + 6 = а² - 2 * а + 10. (2)
в полученном выражении выделим полные квадрат.
тогда (2) примет вид: а² - 2 * а * 1 + 1² + (10 - 1) = (а - 1)² + 9. (3). проанализируем выражение (3), (а - 1)²> 0 при любых а и минимально при а = 1.
объяснение:
у = -х² + 2х + 10
Объяснение:
Квадратичная функция у = ах² + bx + c (1)
График её проходит через точку (0; 10)
Подставим координаты этой точки в формулу (1)
10 = а·0 + b · 0 + c ⇒ c = 10
Вершина параболы находится в точке (1; 11)
Подставим координаты этой точки в формулу (1)
11 = а + b + 10 ⇒ а + b = 1 (2)
Координата х вершины параболы вычисляется по формуле
х(верш) = -b/(2a)
x (верш) = 1, тогда b = -2a (3)
Подставим (3) в (2) а - 2а = 1 ⇒ а = -1
Тогда b = -2 · (-1) = 2
Квадратичная функция получилась такая
у = -х² + 2х + 10
решение на фотографиях