первого раствора взяли 20 литров, а второго - 80 литров.
Объяснение:
Пусть 30%- го раствора взяли х л, а 55%- го раствора - у л, тогда по условию
х + у = 100.
Кислоты в первом растворе 0,3•х л, во втором растворе 0,55•у л, всего 0,3х + 0,55у. По условию в получившейся смеси 0,5•100 = 50 (л) кислоты, составим уравнение: 0,3х + 0,55у = 50.
Оба условия выполняются одновременно, составим и решим систему уравнений:
{х + у = 100,
{0,3х + 0,55у = 50;
{ у = 100 - х,
{0,3х + 0,55у = 50;
{ у = 100 - х,
{0,3х + 0,55•(100 - х) = 50;
{ у = 100 - х,
{0,3х + 55 - 0,55х = 50;
{ у = 100 - х,
{- 0,25х = 50 - 55;
{ у = 100 - х,
{- 0,25х = - 5;
{ у = 100 - х,
{ х = 500:25;
{ у = 100 - х,
{ х = 20;
{ у = 100 - 20,
{ х = 20;
{ у = 80,
{ х = 20.
ответ: первого раствора взяли 20 литров, а второго - 80 литров.
Дано: ABC - равнобедренный треугольник; AC = 12 см; AD = 9.6 см; AB=BC.
Найти: Рabc.
Из прямоугольного треугольника ADC по теореме Пифагора найдем CD
см.
Пусть , тогда
.
Рассмотрим прямоугольный треугольник BHC найдем высоту BH к стороне основания AC; AH=CH=AC/2=6 см.
Площадь равнобедренного треугольника равна , с другой стороны
Приравнивая площади, получим AD * BC = BH * AC.
После возведения в квадрат обе части уравнения и упрощений с подобными членами вы должны получить следующее квадратное уравнение
Корни которого: - не удовлетворяет условию
см
Тогда см
Pabc = AB + BC + AC = 10 + 10 + 12 = 32 см
ответ: 32 см.
x + y = 100
30% 55% 50%
Первое уравнение : x + y = 100
Второе уравнение : 0,3x + 0,55y = 0,5 * 100 или 0,3x + 0,55y = 50
ответ : первого надо взять 20 л, а второго 80 л .