Объяснение:
у=х²+4х-2
Это парабола ,ветви вверх. Координаты вершины
а)х₀=-в/2а, х₀=(-4)/2=-2 , у₀=(-2)²+4*(-2)-2=-6 , (-2; -6).
б) во всех четвертях.
с) х=-2
d)Точки пересечения с осью ох, т.е у=0
х²+4х-2=0
Д=в²-4ас, Д=4²-4*4*(-2)=16+32=48=16*3
х₁=(-в+√Д):2а , х₁=(-4+4√3):2 , х₁=2(-2+2√3):2 , х₁=-2+2√3, (-2+2√3;0)
х₂=(-в-√Д):2а , х₂=(-4-4√3):2 , х₂=2(-2-2√3):2 , х₂=-2-2√3 , (-2-2√3;0)
Точки пересечения с осью оу, т.е. х=0, у=-2 (0;-2)
Доп.точки у=х²+4х-2 :
х: -5 -4 -3 1
у: 3 -2 -5 3
2)у=-х²-2х+6 Это парабола ,ветви вниз.
а)f(2)=-(2)²-2*2+6=-4-4+6=-2,
f(-2)=-(-2)²-2*(-2)+6=-4+4+6=6,
б) точка (-3;к) принадлежит графику функции, значит ее координаты удовлетворяют уравнению у=-х²-2х+6.
к=-(-3)²-2*(-3)+6 , к=-9+6+6 , к=3
5y+2(3-4y)=2y+21
5y+6-8y=2y+21
-3y+6=2y+21
5y=-15
y=-3
6)
пусть боковая сторона - х, тогда основание х+8
Р=х+х+8+х=44
3х=36
х=12-боковая сторона
12+8=20 - основание
стороны треугольника 12, 12, 20
7)
x^2-xy-4x+4y
x^2-yx-4x+4y
(x-y)(x-4)
(x-4)(x-y)
8)
Для этого нужно решить соответствующую систему уравнений
2х + 3у = -12
4х - 6у = 0
Умножим 1-е уравнение на 2 (4х + 6у = -24) и сложим со вторым, получим 8х = -24, х = -3
Подставим -3 вместо х в 1-е уравнение, получим
-6 + 3у = -12
3у = -6
у = -2
ответ
х = -3
у = -2
Это и есть координаты точки пересечения прямых.
9) -
10)
2(3x-y)-5=2x-3y
5-(x-2y)=4y+16
2(3x-y)-5=2x-3y
4x+y-5=0
y=-4x+5
5-(x-2y)=4y+16
-11-x-2y=0
-11-x-2*(-4x+5)=0
-21+7x=0
x=21/7
x=3
4x+y-5=0
4*3+y-5=0
7+y=0
y=-7
11)
Сумма смежных углов - 180 градусов (они составляют развернутый угол) .
Делим 180 на три равные части = 180/3 = 60 градусов.
Таким образом мы нашли меньший угол (он составляет 1/3 от развернутого угла по условию) .
Больший угол составляет 2/3 от развернутого угла, поэтому он равняется 2*60 = 120 градусов.
ответ: 60 и 120 градусов.